Skip to main content

DNS Investigation of the Primary Breakup in a Conical Swirled Jet

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

The mechanisms of primary break-up of a jet produced by a Pressure Swirl Atomizer for aircraft use is investigated. A grid study has been done together with the inlet boundary adopted to setup the simulation. The simulations are undertaken using the in-house multiphase code FS3D based on the volume of Fluid (VOF) method. All simulations were carried out on the Cray XC40 at the High Performance Computing Center Stuttgart (HLRS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bothe, D., Kröger, M., Warnecke, H.J.: A VOF-based conservative method for the simulation of reactive mass transfer from rising bubbles. Fluid Dyn. Mater. Process. 7(3), 303–316 (2011)

    Google Scholar 

  2. Dumouchel, C., Cousin, J., Triballier, K.: Experimental analysis of liquid-gas interface at low Weber number: interface length and fractal dimension. Exp. Fluids 39(8), 651–666 (2005)

    Article  Google Scholar 

  3. Ertl, M., Roth, N., Brenn, G., Gomaa, H., Weigand, B.: Simulations and experiments on shape oscillations of newtonian and non-newtonian liquid droplets. In: ILASS 2013, p. 7 (2013)

    Google Scholar 

  4. Gomaa, H., Stotz, I., Sievers, M., Lamanna, G., Weigand, B.: Preliminary investigation on diesel droplet impact on oil wallfilms in diesel engines. In: ILASS – Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, September 2011 (2011)

    Google Scholar 

  5. Gorokhovski, M., Herrmann, M.: Modeling primary atomization. Annu. Rev. Fluid Mech. 40, 343–366 (2008)

    Article  MathSciNet  Google Scholar 

  6. Hase, M., Weigand, B.: A numerical model for 3D transient evaporation processes based on the volume-of-fluid method. In: ICHMT International Symposium on Advances in Computational, pp. 1–23 (2004)

    Google Scholar 

  7. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981). doi:10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  8. Lefebvre, A.H.: Atomization and Sprays. Hemisphere, New York (1989)

    Google Scholar 

  9. Rauschenberger, P., Birkefeld, A., Reitzle, M., Meister, C., Weigand, B.: A parallelized method for direct numerical simulations of rigid particles in multiphase flow. In: High Performance Computing in Science and Engineering ’14, pp. 321–334. Springer, Berlin (2014)

    Google Scholar 

  10. Rauschenberger, P., Schlottke, J., Weigand, B.: A computation technique for rigid particle flows in an Eulerian framework using the multiphase DNS code FS3D. In: High Performance Computing in Science and Engineering ’11 Transactions of the High Performance Computing Center, Stuttgart (HLRS) (2011)

    Google Scholar 

  11. Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. J. Comput. Phys. 141(2), 112–152 (1998). doi:10.1006/jcph.1998.5906

    Article  MathSciNet  MATH  Google Scholar 

  12. Rieber, M., Graf, F., Hase, M., Roth, N., Weigand, B.: Numerical simulation of moving spherical and strongly deformed droplets. In: Proceedings ILASS-Europe, pp. 1–6 (2000)

    Google Scholar 

  13. Roth, N., Schlottke, J., Urban, J., Weigand, B.: Simulations of droplet impact on cold wall without wetting. In: ILASS, pp. 1–7 (2008)

    Google Scholar 

  14. Roth, N., Gomaa, H., Weigand, B.: Droplet collisions at high weber numbers: experiments and numerical simulations. In: Proceedings of the DIPSI Workshop 2010 on Droplet Impact Phenomena & Spray Investigation, Bergamo (2010)

    Google Scholar 

  15. Schlottke, J., Rauschenberger, P., Weigand, B., Ma, C., Bothe, D.: Volume of fluid direct numerical simulation of heat and mass transfer using sharp temperature and concentration fields. In: ILASS - Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril. http://www.ilass.uci.edu/ (2011)

  16. Weking, H., Schlottke, J., Boger, M., Munz, C.D., Weigand, B.: DNS of rising bubbles using VOF and balanced force surface tension. In: High Performance Computing on Vector Systems. Springer, Berlin, Heidelberg, New York (2010)

    Book  Google Scholar 

  17. Zhu, C., Ertl, M., Meister, C., Rauschenberger, P., Birkefeld, A., Weigand, B.: Direct numerical simulation of inelastic Non-Newtonian jet breakup. In: High Performance Computing in Science and Engineering ’13, pp. 321–335. Springer, Berlin (2013)

    Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the High Performance Computing Center Stuttgart (HLRS) for its support and supply of computational time on the Cray XE6 and Cray XC40 platforms under the Grant No. FS3D/11142. The authors also greatly acknowledge financial support of this project from DFG for the priority program SPP 1423 “Prozess Spray”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Ertl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Galbiati, C., Ertl, M., Tonini, S., Cossali, G.E., Weigand, B. (2016). DNS Investigation of the Primary Breakup in a Conical Swirled Jet. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_22

Download citation

Publish with us

Policies and ethics