Skip to main content

Numerical Simulation of Turbulent Combustion with a Multi-Regional Approach

  • Conference paper
  • First Online:

Abstract

The current work uses a multi-regional method for improving the computing performance of large-scale combustion simulations. In this manner, the solution of the isothermal flow within the burner is treated separately from the domain with combustion reaction. For the fresh gas flow within the nozzle only the Navier-Stokes equations for a non-reactive, fixed composition flow are solved, whereas the combustion model accounting for the chemical reactions is enabled in the ignition zone downstream of the burner. Because the chemistry solution takes a major part of the total computing time, the approach saves that part of execution time for the computing nodes located within the nozzle, where no chemical reaction occurs. In the present study, the potential of this methodology has been assessed by large eddy simulation (LES) of a model burner operated with a premixed methane/air flame. The multi-regional simulation showed consistent results with data obtained from the conventional single-regional computation. It however has been proven to be considerably faster than the comparable single-zonal LES, denoting an improved computing performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. Edwards Inc., Philadelphia, PA (2005). ISBN 978-1-930217-10-2

    Google Scholar 

  2. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  3. van Oijen, J., Lammers, F., de Goey, L.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)

    Article  Google Scholar 

  4. Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44(5), 349–377 (2008)

    Article  Google Scholar 

  5. Spalart, P.R.: Comments on the feasibility of LES for wing and on a hybrid RANS/LES approach. In: First ASOSR CONFERENCE on DNS/LES, Arlington, TX (1997)

    Google Scholar 

  6. Strelets, M.: Detached Eddy simulation of massively separated flows. In: AIAA 2001–0879 (2001)

    Google Scholar 

  7. Schwarz, A., Janicka, J. (eds.): Combustion Noise. Springer, Berlin/Heidelberg (2009). ISBN-10: 3642020372

    Google Scholar 

  8. Zhang, F., Habisreuther, P., Bockhorn, H., Nawroth, H., Paschereit, C.O.: On prediction of combustion generated noise with the turbulent heat release rate. Acta Acustica united Acustica 99, 940–951 (2013). doi:10.3813/AAA.918673

    Article  Google Scholar 

  9. Zhang, F.: Numerical modeling of noise generated by turbulent combustion. Dissertation, Karlsruhe Institute of Technology/Shaker Verlag, Germany (2014). ISBN: 978-3-8440-2508-8

    Google Scholar 

  10. Kee, J., Rupley, F., Miller, J.: Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Report No. SAND89-8009B, Sandia National Laboratories (1989)

    Google Scholar 

  11. Schmid, H., Habisreuther, P., Leuckel, W.: A model for calculating heat release in premixed turbulent flames. Combust. Flame 113, 79–91 (1998)

    Article  Google Scholar 

  12. Fröhlich, J.: Large Eddy Simulation Turbulenter Strömungen. Teubner Verlag, Stuttgart (2006)

    Google Scholar 

  13. Zhang, F., Habisreuther, P., Hettel, M., Bockhorn, H.: Modelling of a premixed swirl-stabilized flame using a turbulent flame speed closure model in LES. Flow Turbul. Combust. 82, 537–551 (2009)

    Article  Google Scholar 

  14. Zhang, F., Habisreuther, P., Bockhorn, H.: A unified TFC combustion model for numerical computation of turbulent gas flames. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’12. Springer, Berlin/Heidelberg (2013). ISBN: 978-3-642-33374-3

    Google Scholar 

  15. Zhang, F., Habisreuther, P., Hettel, M., Bockhorn, H.: A newly developed unified turbulent flame speed closure (UTFC) combustion model for numerical simulation of turbulent gas flames. In: Proceedings of the 25, Deutscher Flammentag, pp. 177–182 (2011)

    Google Scholar 

  16. Bilger, R.: Conditional moment closure for turbulent reacting flow. Phys. Fluids 5(2), 436–444 (1993)

    Article  Google Scholar 

  17. Navarro-Martinez, S., Kronenburg, A.: LES-CMC simulations of a lifted methane flame. Proc. Combust. Inst. 32, 1509–1516 (2009)

    Article  Google Scholar 

  18. Domenico, M.D., Gerlinger, P., Noll, B.: Numerical simulations of confined, turbulent, lean, premixed flames using a detailed chemistry combustion model. In: Proceedings of ASME Turbo Expo 2011, GT2011-45520

    Google Scholar 

  19. OpenCFD Ltd.: OpenFOAM user guide, Version 2.3.0 (2014)

    Google Scholar 

  20. Ferziger, J., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)

    Book  Google Scholar 

  21. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 286, 652–665 (2003)

    Article  Google Scholar 

  22. Poinsot, T., Lele, S.: Boundary conditions for direct simulation of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  Google Scholar 

  23. Farrell, P.E., Maddison, J.R.: Conservative interpolation between volume meshes by local Galerkin projection. Comput. Methods Appl. Mech. Eng. (2010). doi:10.1016/j.cma.2010.07.015

    Article  MATH  Google Scholar 

  24. Nawroth, H., Paschereit, C.O., Zhang, F., Habisreuther, P., Bockhorn, H.: Flow investigation and acoustic measurements of an unconfined turbulent premixed jet flame. In: AIAA Paper 2013–2459 (2013)

    Google Scholar 

  25. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Jr., Lissianski, V.V., Qin, Z.: http://www.me.berkeley.edu/gri_mech/ (2000)

  26. ForHLR user guide. Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT). http://www.bwhpc-c5.de/wiki/index.php/ForHLR (2014)

Download references

Acknowledgements

The authors wish to acknowledge the financial support by the German Research Council (DFG) through the Research Unit DFG-BO693/27 “Combustion Noise” and the computing time from the ForHLR I cluster at SCC at KIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feichi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, F., Zirwes, T., Habisreuther, P., Bockhorn, H. (2016). Numerical Simulation of Turbulent Combustion with a Multi-Regional Approach. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_18

Download citation

Publish with us

Policies and ethics