Skip to main content

Dynathor: Dynamics of the Complex of Cytochrome P450 and Cytochrome P450 Reductase in a Phospholipid Bilayer

  • Conference paper
  • First Online:

Abstract

The Dynathor project aims at understanding the interaction of cytochrome P450 (CYP, P450) enzymes and their redox partner, cytochrome P450 reductase (CPR), in a phospholipid bilayer. Through simulation studies on the HLRS CRAY systems (initially XE6, later on XC40), we investigated the interactions of models of membrane-bound P450s (CYP51 and CYP1A1) and CPR. A model of membrane-bound T. brucei CYP51 and the human CPR was successfully built and simulated for 217.5 ns. A model of human CYP1A1 and the human CPR in a phospholipid bilayer was also built and is being simulated. These models can be used as starting points to understand the selectivity of the interactions of CYPs with CPR in the native membrane-bound forms, and thus may aid drug discovery projects.

Furthermore, we evaluated the method of Random Acceleration Molecular Dynamics (RAMD) for use in calculating relative residence times of proteins with small molecules. This would allow the computation of relative off rates for drug molecules. As a small model system for this evaluation, we use the N-terminal domain of human heat shock protein 90 (HSP90) and a set of different ligands. The obtained RAMD simulated residence times show a clear correlation with experimental values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  Google Scholar 

  2. Theoretical and U. o. I. a. U.-C. Computational Biophysics Group: NAMD 2.9 release notes. http://www.ks.uiuc.edu/Research/namd/2.9/notes.html. Online; Accessed 27 March 2015

  3. Theoretical and U. o. I. a. U.-C. Computational Biophysics Group: NAMD 2.10b2 release notes. http://www.ks.uiuc.edu/Research/namd/2.10b2/notes.html. Online; Accessed 27 March 2015

  4. HLRS: Cray XE6. https://wickie.hlrs.de/platforms/index.php/Cray_XE6. Online; Accessed 27 March 2015

  5. HLRS: Cray XC40. https://wickie.hlrs.de/platforms/index.php/Cray_XC40. Online; Accessed 27 March 2015

  6. Lüdemann, S.K., Lounnas, V., Wade, R.C.: How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J. Mol. Biol. 303, 797–811 (2000)

    Google Scholar 

  7. Lüdemann, S.K., Lounnas, V., Wade, R.C.: How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways. J. Mol. Biol. 303, 813–830 (2000)

    Google Scholar 

  8. Phillips, J.C., Stone, J.E., Vandivort, K.L., Armstrong, T.G., Wozniak, J.M., Wilde, M., Schulten, K.: Petascale tcl with NAMD, VMD, and Swift/T, in Proceedings of the 1st First Workshop for High Performance Technical Computing in Dynamic Languages, HPTCDL ’14, (Piscataway, NJ, USA), pp. 6–17. IEEE Press, New York (2014)

    Google Scholar 

  9. Sevrioukova, I.F., Li, H., Zhang, H., Peterson, J.A., Poulos, T.L.: Structure of a cytochrome P450-redox partner electron-transfer complex. Proc. Natl. Acad. Sci. U.S.A. 96, 1863–1868 (1999)

    Article  Google Scholar 

  10. Ahuja, S., Jahr, N., Im, S.-C., Vivekanandan, S., Popovych, N., Le Clair, S.V., Huang, R., Soong, R., Xu, J., Yamamoto, K., Nanga, R.P., Bridges, A., Waskell, L., Ramamoorthy, A.: A model of the membrane-bound cytochrome b5-cytochrome P450 complex from nmr and mutagenesis data. J. Biol. Chem. 288, 22080–22095 (2013)

    Article  Google Scholar 

  11. Cojocaru, V., Balali-Mood, K., Sansom, M.S.P., Wade, R.C.: Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS. Comput. Biol. 7, e1002152 (2011)

    Article  Google Scholar 

  12. Yu, X., Cojocaru, V., Mustafa, G., Salo-Ahen, O.M.H., Lepesheva, G.I., Wade, R.C.: Dynamics of CYP51: implications for function and inhibitor design. J. Mol. Recognit. 28, 59–73 (2015)

    Article  Google Scholar 

  13.  Berka, K., Hendrychová, T., Anzenbacher, P., Otyepka, M.: Membrane position of ibuprofen agrees with suggested access path entrance to cytochrome P450 2C9 active site. J. Phys. Chem. A 115, 11248–11255 (2011)

    Article  Google Scholar 

  14. Denisov, I.G., Shih, A.Y., Sligar, S.G.: Structural differences between soluble and membrane bound cytochrome P450s. J. Inorg. Biochem. 108, 150–158 (2012)

    Article  Google Scholar 

  15. Baylon, J.L., Lenov, I.L., Sligar, S.G., Tajkhorshid, E.: Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J. Am. Chem. Soc. 135, 8542–8551 (2013)

    Article  Google Scholar 

  16. Sgrignani, J., Magistrato, A.: Influence of the membrane lipophilic environment on the structure and on the substrate access/egress routes of the human aromatase enzyme. A computational study. J. Chem Inf. Model. 52, 1595–1606 (2012)

    Article  Google Scholar 

  17. Berka, K., Paloncýová, M., Anzenbacher, P., Otyepka, M.: Behavior of human cytochromes P450 on lipid membranes. J. Phys. Chem. B 117, 11556–11564 (2013)

    Article  Google Scholar 

  18. Sündermann, A., Oostenbrink, C.: Molecular dynamics simulations give insight into the conformational change, complex formation, and electron transfer pathway for cytochrome P450 reductase. Protein Sci. 22, 1183–1195 (2013)

    Article  Google Scholar 

  19. Gabdoulline, R.R., Wade, R.C.: Brownian dynamics simulation of protein-protein diffusional encounter. Methods 14, 329–341 (1998)

    Article  Google Scholar 

  20. Gabdoulline, R.R., Wade, R.C.: On the contributions of diffusion and thermal activation to electron transfer between phormidium laminosum plastocyanin and cytochrome f: Brownian dynamics simulations with explicit modeling of nonpolar desolvation interactions and electron transfer events. J. Am. Chem. Soc. 131, 9230–9238 (2009)

    Article  Google Scholar 

  21. Motiejunas, D., Gabdoulline, R., Wang, T., Feldman-Salit, A., Johann, T., Winn, P.J., Wade, R.C.: Protein-protein docking by simulating the process of association subject to biochemical constraints. Proteins 71, 1955–1969 (2008)

    Article  Google Scholar 

  22. Sandikci, A., Gloge, F., Martinez, M., Mayer, M.P., Wade, R., Bukau, B., Kramer, G.: Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nat. Struct. Mol. Biol. 20, 843–850 (2013)

    Article  Google Scholar 

  23. Pachov, G.V., Gabdoulline, R.R., Wade, R.C.: On the structure and dynamics of the complex of the nucleosome and the linker histone. Nucleic Acids Res. 39, 5255–5263 (2011)

    Article  Google Scholar 

  24. Karyakin, A., Motiejunas, D., Wade, R.C., Jung, C.: FTIR studies of the redox partner interaction in cytochrome P450: the PDX-P450cam couple. Biochim. Biophys. Acta 1770, 420–431 (2007).

    Article  Google Scholar 

  25. Tripathi, S., Li, H., Poulos, T.L.: Structural basis for effector control and redox partner recognition in cytochrome P450. Science 340, 1227–1230 (2013)

    Article  Google Scholar 

  26. Hiruma, Y., Hass, M.A.S., Kikui, Y., Liu, W.-M., Ölmez, B., Skinner, S.P., Blok, A., Kloosterman, A., Koteishi, H., Löhr, F., Schwalbe, H., Nojiri, M., Ubbink, M.: The structure of the cytochrome P450cam-putidaredoxin complex determined by paramagnetic nmr spectroscopy and crystallography. J. Mol. Biol. 425, 4353–4365 (2013)

    Article  Google Scholar 

  27. Im, S.-C., Waskell, L.: The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b(5). Arch Biochem. Biophys. 507, 144–153 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Klaus Tschira Foundation, the German Academic Exchange Service (DAAD) for scholarships to Prajwal Nandekar and Ghulam Mustafa as well as the EU/EFPIA Innovative Medicines Initiative (IMI) Joint Undertaking, “Kinetics for Drug Discovery”, K4DD (grant no. 115366). Finally, we would like to thank the HLRS for providing CPU time for this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Richter or Rebecca C. Wade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Yu, X., Kokh, D.B., Nandekar, P., Mustafa, G., Richter, S., Wade, R.C. (2016). Dynathor: Dynamics of the Complex of Cytochrome P450 and Cytochrome P450 Reductase in a Phospholipid Bilayer. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_17

Download citation

Publish with us

Policies and ethics