Skip to main content

Mechanochemistry of Cyclopropane Ring-Opening Reactions

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

Since the end of the 1960th, the Woodward–Hoffmann rules have been a well-grounded and powerful tool to understand and predict pericyclic reactions. Recently, astonishing results on such reactions subject to mechanochemical activation by external forces have revealed reaction pathways at sufficiently large forces which are not expected from the Woodward–Hoffmann rules. These findings have started a controversy whether the “Woodward–Hoffmann rules are broken in mechanochemistry”. Our study of ring opening of cyclopropane shows that the electronic structure underlying the dis- and conrotatory pathways, which are greatly distorted upon applying forces to an extent that eventually the “thermally forbidden” process becomes “mechanochemically allowed”, does not change. It is rather the mechanical work that lowers the activation barrier and therefore promotes reaction pathways to products not expected from the Woodward–Hoffmann rules. A front cover and an additional cover profile article have been devoted to these findings (Wollenhaupt et al., Chem Phys Chem 16:1593–1597, 2015)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. International Series of Monographs on Chemistry. Clarendon Press, Oxford (1990)

    Google Scholar 

  2. Beyer, M.K., Clausen-Schaumann, H.: Chem. Rev. 105, 2921–2948 (2005)

    Article  Google Scholar 

  3. Caruso, M.M., Davis, D.A., Shen, Q., Odom, S.A., Sottos, N.R., White, S.R., Moore, J.S.: Chem. Rev. 109, 5755–5798 (2009)

    Article  Google Scholar 

  4. Dopieralski, P., Ribas-Arino, J., Marx, D.: Angew. Chem. Int. Ed. 50, 7105–7108 (2011)

    Article  Google Scholar 

  5. Dopieralski, P., Anjukandi, P., Rückert, M., Shiga, M., Ribas-Arino, J., Marx, D.: J. Mater. Chem. 21, 8309–8316 (2011)

    Article  Google Scholar 

  6. Friedrichs, J., Lüßmann, M., Frank, I.: Chem. Phys. Chem. 11, 3339–3342 (2010)

    Article  Google Scholar 

  7. Glendening, E.D., Weinhold, F.: J. Comput. Chem. 19, 593–609 (1998)

    Article  Google Scholar 

  8. Glendening, E.D., Badenhoop, J.K., Weinhold, F.: J. Comput. Chem. 19, 628–646 (1998)

    Article  Google Scholar 

  9. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H., Gaub, H.E.: Science 283, 1727–1730 (1999)

    Article  Google Scholar 

  10. Hickenboth, C.R., Moore, J.S., White, S.R., Sottos, N.R., Baudry, J., Wilson, S.R.: Nature 446, 423–427 (2007)

    Article  Google Scholar 

  11. Hoffmann, R., Woodward, R.B.: Acc. Chem. Res. 1, 17–22 (1968)

    Article  Google Scholar 

  12. Kochhar, G.S., Bailey, A., Mosey, N.J.: Angew. Chem. Int. Ed. 49, 7452–7455 (2010)

    Article  Google Scholar 

  13. Lenhardt, J.M., Black, A.L., Craig, S.L.: J. Am. Chem. Soc. 131, 10818–10819 (2009)

    Article  Google Scholar 

  14. Ong, M.T., Leiding, J., Tao, H., Virshup, A.M., Martínez, T.J.: J. Am. Chem. Soc. 131, 6377–6379 (2009)

    Article  Google Scholar 

  15. Ribas-Arino, J., Marx, D.: Chem. Rev. 112, 5412–5487 (2012)

    Article  Google Scholar 

  16. Ribas-Arino, J., Shiga, M., Marx, D.: Angew. Chem. 121, 4254–4257 (2009)

    Article  Google Scholar 

  17. Ribas-Arino, J., Shiga, M., Marx, D.: Chem. Eur. J. 15, 13331–13335 (2009)

    Article  Google Scholar 

  18. Ribas-Arino, J., Shiga, M., Marx, D.: J. Am. Chem. Soc. 132, 10609–10614 (2010)

    Article  Google Scholar 

  19. Wollenhaupt, M., Krupička, M., Marx, D.: Chem. Phys. Chem 16, 1593–1597 (2015)

    Article  Google Scholar 

  20. Woodward, R.B., Hoffmann, R.: J. Am. Chem. Soc. 87, 395–397 (1965)

    Article  Google Scholar 

  21. Woodward, R.B., Hoffmann, R.: Angew. Chem. Int. Ed. Engl. 8, 781–853 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

Partial financial support is provided by the DFG Koselleck Grant “Understanding Mechanochemistry” to Dominik Marx We wish to thank Przemyslaw Dopieralski and Martin Krupička for their contributions to this work. Computer resources have kindly been provided by HLRS Stuttgart (account ID 12982). Calculations were run using the distributed memory (MPI) parallelization scheme. In most runs 192 cores (6 nodes in the Hornet system) were used, with an average wall time of about 5.8 h (equivalent to ca. 1100 core-hours per run). A few runs were performed using 128 cores (4 nodes in Hornet) with an average wall time of about 9.1 h (ca. 1100 core-hours per run), whereas another group of runs were done using 256 cores (8 nodes in Hornet) with an average wall time of about 5.3 h (ca. 1300 core-hours). The requirement of RAM for each of these runs was on average 15 GB of total memory (2.5 GB per node for most runs). A typical run required approximately 1.5 GB of disk space for permanent data storage and an additional 4.5 GB for scratch data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Wollenhaupt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wollenhaupt, M., Zoloff, M., Marx, D. (2016). Mechanochemistry of Cyclopropane Ring-Opening Reactions. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_15

Download citation

Publish with us

Policies and ethics