Skip to main content

Interfacial Properties and Growth Dynamics of Semiconductor Interfaces

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

We present computational results on dynamics and properties of semiconductor materials and interfaces. The adsorption of cyclooctyne on silicon can be shown to proceed barrierless into an on-top structure. Comparing different interfaces of the GaP/Si system, a preference for mixed interfaces (i.e. not purely Si/Ga or Si/P) can be found and understood in terms of the electrostatic potential across the interface and chemical bonding specifics. In further work, the electronic structure of mixed III/V semiconductors will be studied in the way described here for GaAs and used for the prediction of optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mette, G., Dürr, M., Bartholomäus, R., Koert, U., Höfer, U.: Real-space adsorption studies of cyclooctyne on Si(001). Chem. Phys. Lett. 556, 70 (2013)

    Article  Google Scholar 

  2. Schober, C.: Theoretische Untersuchungen der Adsorption von Ethin und Cyclooctin auf der Si(001)-Oberfläche. Master’s thesis, Philipps-Universität Marburg (2012)

    Google Scholar 

  3. Jónsson, H., Mills, G., Jacobsen, K.W.: In: Berne, B.J., Ciccotti, G., Coker, D.F.: Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, Singapore (1998)

    Google Scholar 

  4. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Article  MathSciNet  Google Scholar 

  5. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  MathSciNet  Google Scholar 

  6. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mat. Sci. 6, 15 (1996)

    Article  Google Scholar 

  7. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  8. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  9. Perdew, J.P., Burke, K., Ernzerhof, M.: Erratum: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)

    Article  Google Scholar 

  10. Grimme, S.: Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 1(2), 211 (2011)

    Article  Google Scholar 

  11. Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011)

    Article  Google Scholar 

  12. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  13. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  14. Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  MathSciNet  Google Scholar 

  15. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradient for solving linear systems. J. Res. Natl. Bur. Stanf. 49(6), 409 (1952)

    Article  MathSciNet  Google Scholar 

  16. Nocedal, E.: Updating quasi-newton matrices with limited storage. Math. Comput. 35, 773 (1980)

    Article  MathSciNet  Google Scholar 

  17. Born, M., Oppenheimer, R.: Zur Quantentheorie der Molekeln. Ann. Phys. 84, 457 (1927)

    Google Scholar 

  18. Verlet, R.: Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Phys. Rev. 159(1), 98 (1967)

    Article  Google Scholar 

  19. Verlet, L.: Computer “experiments” on classical fluids. ii. equilibrium correlation functions. Phys. Rev. 165(1), 201 (1967)

    Article  Google Scholar 

  20. Nose, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511 (1984)

    Article  Google Scholar 

  21. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Article  Google Scholar 

  22. D.J. Evans, B.L. Holian, The nose-hoover thermostat. J. Chem. Phys. 83(8), 4069 (1985)

    Article  Google Scholar 

  23. S.F. Bent, Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects. Surf. Sci. 500, 879 (2002)

    Article  Google Scholar 

  24. Random.org true random number service. URL http://www.random.org/decimal-fractions. Accessed 21.04.2015

  25. Stegmüller, A., Rosenow, P., Tonner, R.: A quantum chemical study on gas phase decomposition pathways of triethylgallane (TEG, Ga(C2H5)3) and tert-butylphosphine (TBP, PH2(t-C4H9)) under MOVPE conditions. Phys. Chem. Chem. Phys. 16(32), 17018 (2014)

    Article  Google Scholar 

  26. Stegmüller, A., Tonner, R.: The beta-hydrogen elimination mechanism in absence of acceptor orbitals in EH2(t-C4H9) (E = N-Bi). Inorg. Chem. 54(13), 6363 (2015)

    Article  Google Scholar 

  27. Stegmüller, A., Tonner, R.: A quantum-chemical descriptor for CVD precursor design: predicting decomposition rates of TBP and TBAs isomers and derivatives. Chem. Vap. Deposition, 21, 161–165 (2015). doi:10.1002/cvde.201504332

    Article  Google Scholar 

  28. Beyer, A., Oelerich, J.O., Jandieri, K., Werner, K., Stolz, W., Baranovskii, S.D.: Tonner, R., Volz, K.: Pyramidal Structure Formation at the Interface between III/V Semiconductors and Silicon (2015, submitted)

    Google Scholar 

  29. Koukourakis, N., Buckers, C., Funke, D.A., Gerhardt, N.C., Liebich, S., Chatterjee, S., Lange, C., Zimprich, M., Volz, K., Stolz, W., Kunert, B., Koch, S.W., Hofmann, M.R.: High room-temperature optical gain in ga(nasp)/si heterostructures. Appl. Phys. Lett. 100, 092107 (2012)

    Article  Google Scholar 

  30. Kim, Y.S., Marsman, M., Kresse, G., Tran, F., Blaha, P.: Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors. Phys. Rev. B 82(20), 205212 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research training group (Graduiertenkolleg, DFG) 1782 “Functionalization of Semiconductors”, the collaborative research centre (Sonderforschungsbereich, DFG) 1083 “Structure and Dynamics of Internal Interfaces” and the Beilstein Institut, Frankfurt am Main, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Tonner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rosenow, P., Stegmüller, A., Pecher, L., Tonner, R. (2016). Interfacial Properties and Growth Dynamics of Semiconductor Interfaces. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_13

Download citation

Publish with us

Policies and ethics