Skip to main content

Large-Scale Modeling of Defects in Advanced Oxides: Oxygen Vacancies in BaZrO3 Crystals

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

Quantum mechanical simulations have proved to be an accurate tool in the description and characterization of point defects which can substantially alter the physical and chemical properties of oxides and their applications, e.g. in fuel cells and permeation membranes. Accurate simulations should take into account both the defect energetics in the real material and the thermodynamic effects at finite temperatures. We studied and compared here the structural, electronic and thermodynamic properties of the neutral \(\mathrm{(v_{O}^{\times })}\) and the positively doubly charged \(\mathrm{(v_{O}^{\bullet \bullet })}\) oxygen vacancies in bulk BaZrO3; particular emphasis was given in the evaluation of the contribution of lattice vibrations on the defect thermodynamic properties. The large-scale computer calculations were performed within the linear combination of atomic orbitals (LCAO) approach and the hybrid of Hartree-Fock method and density functional theory (HF-DFT). It is shown that phonons contribute significantly to the formation energy of the charged oxygen vacancy at high temperatures (\(\sim\) 1 eV at 1000 K), due to the large lattice distortion brought by this defect and thus their neglect would lead to a considerable error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsch, A., Sokol, A., Catlow, C.R.A.: Energy storage: rechargeable lithium batteries. In: Computational Approaches to Energy Materials. Wiley, New York (2013)

    Google Scholar 

  2. Kuklja, M.M., Kotomin, E.A., Merkle, R., Mastrikov, Yu.A., Maier, J.: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 5443–5471 (2013)

    Article  Google Scholar 

  3. Donnerberg, H.J.: Atomic Simulations of Electro-Optical and Magneto-Optical Materials. Springer Tracts in Modern Physics. Springer, Berlin (1999)

    Google Scholar 

  4. Scott, J.F., Dawber, M.: Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. App. Phys. Lett. 76, 3801–3803 (2000)

    Article  Google Scholar 

  5. Hwang, H.Y.: Perovskites: oxygen vacancies shine blue. Nat. Mater. 4, 803–804 (2005)

    Article  Google Scholar 

  6. Merkle, R., Maier, J.: How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew. Chem. Int. Ed. 47, 3874–3894 (2008)

    Article  Google Scholar 

  7. Sundell, P.G., Björketun, M.E., Wahnström, G.: Thermodynamics of doping and vacancy formation in BaZrO3 perovskite oxide from density functional calculations. Phys. Rev. B 73, 104112 (2006)

    Article  Google Scholar 

  8. Akbarzadeh, A.R., Kornev, I., Malibert, C., Bellaiche, L., Kiat, J.M.: Combined theoretical and experimental study of the low-temperature properties of BaZrO3. Phys. Rev. B 72, 205104 (2005)

    Article  Google Scholar 

  9. Bilić, A., Gale, J.D.: Gale: Ground state structure of BaZrO3: a comparative first-principles study. Phys. Rev. B 79, 174107 (2009)

    Article  Google Scholar 

  10. Magyari-Köpe, B., Vitos, L., Grimvall, G., Johansson, B., Kollár, J.: Low-temperature crystal structure of CaSiO3 perovskite: an ab initio total energy study. Phys. Rev. B 65, 193107 (2002)

    Article  Google Scholar 

  11. Evarestov, R.A.: Hybrid density functional theory LCAO calculations on phonons in Ba(Ti,Zr,Hf)3. Phys. Rev. B 83, 014105 (2011)

    Article  Google Scholar 

  12. Perdew, J.P., Ernzerhof, M., Burke, K.: Generalized gradient approximation made simple. J. Chem. Phys. 105, 9982–9985 (1996)

    Article  Google Scholar 

  13. Zhang, S.B., Northrup, J.E.: Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991)

    Article  Google Scholar 

  14. Dovesi, R., Saunders, V.R., Roetti, R.O.C., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., D’Arco, P., Llunell, M., Causà, M., Noël, Y.: CRYSTAL14 User’s Manual University of Torino, Torino (2014)

    Google Scholar 

  15. Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C.M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D’Arco, P., Noël, Y., Causà, M., Rérat, M., Kirtman, B.: CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int. J. Quant. Chem. 114, 1287–1317 (2014)

    Article  Google Scholar 

  16. Monkhorst, H.J., Pack, J.D: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  MathSciNet  Google Scholar 

  17. Pies, W., Weiss, A.: Landolt–Börnstein. Numerical data and functional relationships in science and technology, Group III. In: Crystal and Solid State Physics, Vol. 7. Crystal Structure Data of Inorganic Compounds. Parts a and g. A. Acta Cryst. A. International Union of Crystallography (1975)

    Google Scholar 

  18. Robertson, J.: Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18, 1785–1791 (2000)

    Article  Google Scholar 

  19. Eglitis, R.I.: Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ionics 230, 43–47 (2013)

    Article  Google Scholar 

  20. Parida, S., Rout, S.K., Cavalcante, L.S., Sinha, E., Li, M.S., Subramanian, V., Gupta, N., Gupta, V.R., Varela, J.A., Longo, E.: Structural refinement, optical and microwave dielectric properties of BaZrO3. Ceram. Int. 38, 2129–2138 (2012)

    Article  Google Scholar 

  21. Perry, C.H., McCarthy, D.J., Rupprecht, G.: Dielectric dispersion of some perovskite zirconates. Phys. Rev. 138, A1537–A1538 (1965)

    Article  Google Scholar 

  22. Zhukovskii, Y.F., Kotomin, E.A., Piskunov, S., Ellis, D.E.: A comparative ab initio study of bulk and surface oxygen vacancies in PbTiO3, PbZrO3 and SrTiO3 perovskites. Solid State Commun. 149, 1359–1362 (2009)

    Article  Google Scholar 

  23. Evarestov, R., Blokhin, E., Gryaznov, D., Kotomin, E.A., Merkle, R., Maier, J.: Jahn-Teller effect in the phonon properties of defective SrTiO3 from first principles. Phys. Rev. B, 85, 174303 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Authors greatly appreciated help and support from the High Performance Computer Center in Stuttgart (HLRS, project DEFTD 12939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Arrigoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arrigoni, M., Kotomin, E.A., Maier, J. (2016). Large-Scale Modeling of Defects in Advanced Oxides: Oxygen Vacancies in BaZrO3 Crystals. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_12

Download citation

Publish with us

Policies and ethics