Skip to main content

Ab-Initio Calculations of the Vibrational Properties and Dynamical Processes in Semiconductor Nanostructures

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

The computational facility made available to us in the year 2014 at the High Performance Computing Center Stuttgart (HLRS), enabled us to calculate the lattice strains, the vibrational properties, and carrier relaxation processes in colloidal semiconductor nanoclusters based on first-principles density functional theory (DFT). In this reporting period, we made two important contributions to the field by pushing the boundary in terms of computational power and in term of new algorithmic developments. We studied the phonon-assisted carrier relaxation processes in colloidal semiconductor nanoclusters using large-scale ab initio calculations and found two relaxation pathways for fast carrier relaxation. We also studied the strains and their consequences on the vibrational properties in colloidal semiconductor core-shell nanoclusters. We found a heavily compressive strain on both the cores and the shells of InAs-InP and CdSe-CdS core-shell nanoclusters, which contributes a large blue-shift of the vibrational frequencies. These results lead to a different interpretation of the frequency shifts of recent Raman experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pijpers, J.J.H., et al.: J. Phys. Chem. C 111, 4146 (2007)

    Google Scholar 

  2. Klimove, V.I., Ivanov, S.A., Nanda, J., Achermann, M., Bezel, I., McGurie, J.A., Piryatinski, A.: Nature 447, 441 (2007)

    Google Scholar 

  3. Kraus, R.M., Lagoudakis, P.G., Rogach, A.L., Talapin, D.V., Weller, H., Lupton, J.M., Feldmann, J.: Phys. Rev. Lett. 98, 017401 (2007)

    Google Scholar 

  4. Gaponik, N., Hickey, S.G., Dorfs, D., Rogach, A.L., Eychmüller, A.: Small 6, 1364 (2010)

    Google Scholar 

  5. Talapin, D.V., Lee, J.-S., Kovalenko, M.V., Shevchenko, E.V.: Chem. Rev. 110, 389 (2010)

    Google Scholar 

  6. Sambur, J.B., Novet, T., Parkinson, B.A.: Science 330, 63 (2010)

    Google Scholar 

  7. Mocatta, D., Cohen, G., Schattner, J., Millo, O., Rabani, E., Banin, U.: Science 332, 77 (2011)

    Google Scholar 

  8. Bourzac, K.: Nature 493, 283 (2013)

    Google Scholar 

  9. Yang, C.S., Kauzlarich, S.M., Wang, Y.C.: Chem. Mater. 11, 3666 (1999)

    Google Scholar 

  10. Cao, Y.W., Banin, U.: J. Am. Chem. Soc. 122, 9692 (2000)

    Google Scholar 

  11. Baranov, A.V., Rakovich, Yu.P., Donegan, J.F., Perova, T.S., Moore, R.A., Talapin, D.V., Rogach, A.L., Masumoto, Y., Nabiev, I.: Phys. Rev. B 68, 165306 (2003)

    Google Scholar 

  12. Jing, L., Kershaw, S.V., Kipp, T., Kalytchuk, S., Ding, K., Zeng, J., Jiao, M., Sun, X., Mews, A., Rogach, A.L., Gao, M.: J. Am. Chem. Soc. 137, 2073 (2015)

    Google Scholar 

  13. Pistol, M.E., Pryor, C.E.: J. Phys. Chem. C 115, 10931 (2011)

    Google Scholar 

  14. Niquet, Y.-M., Delerue, C.: Phys. Rev. B 84, 075478 (2011)

    Google Scholar 

  15. Neupane, M.R., Lake, R.K., Rahman, R.: J. Appl. Phys. 110, 074306 (2011)

    Google Scholar 

  16. Schrier, J., Wang, L.-W.: Phys. Rev. B 73, 245332 (2006)

    Google Scholar 

  17. Luo, Y., Wang, L.-W.: ACS Nano 4, 91 (2010)

    Google Scholar 

  18. Khoo, K.H., Arantes, J.T., Chelikowsky, J.R., Dalpian, G.M.: Phys. Rev. B 84, 075311 (2011)

    Google Scholar 

  19. Han, P., Bester, G.: Phys. Rev. B 85, 041306(R) (2012)

    Google Scholar 

  20. Bockelmann, U., Bastard, G.: Phys. Rev. B 42, 8947 (1990)

    Google Scholar 

  21. Benisty, H., Sotomayor-Torrès, C.M., Weisbuch, C.: Phys. Rev. B 44, 10945 (1991)

    Google Scholar 

  22. Urayama, J., Norris, T.B., Singh, J., Bhattacharya, P.: Phys. Rev. Lett. 86, 4930 (2001)

    Google Scholar 

  23. Xu, S., Mikhailovsky, A.A., Hollingsworth, J.A., Klimov, V.I.: Phys. Rev. B 65, 045319 (2002)

    Google Scholar 

  24. Woggon, U., Giessen, H., Gindele, F., Wind, O., Fluegel, B., Peyghambarian, N.: Phys. Rev. B 54, 17681 (1996)

    Google Scholar 

  25. Klimov, V.I., McBranch, D.W.: Phys. Rev. Lett. 80, 4028 (1998)

    Google Scholar 

  26. Harbold, J.M., Du, H., Krauss, T.D., Cho, K.S., Murray, C.B., Wise, F.W.: Phys. Rev. B 72, 195312 (2005)

    Google Scholar 

  27. Kraus, R.M., Lagoudakis, P.G., Muller, J., Rogach, A.L., Lupton, J.M., Feldmann, J, Talapin, D.V., Weller, H.: J. Phys. Chem. B 109, 18214 (2005)

    Google Scholar 

  28. Klimov, V.I., Mikhailovsky, A.A., McBranch, D.W., LeatSherdale, C.A., Bawendi, M.G.: Phys. Rev. B 61, 13349 (2000)

    Google Scholar 

  29. Wang, L.-W., Califano, M., Zunger, A., Franceschetti, A.: Phys. Rev. Lett. 91, 056404 (2003)

    Google Scholar 

  30. Pijpers, J.J.H., Milder, M.T.W., Delerue, C., Bonn, M.: J. Phys. Chem. C 114, 6318 (2010)

    Google Scholar 

  31. Li, X.-Q., Nakayama, H., Arakawa, Y.: Phys. Rev. B 59, 5069 (1999)

    Google Scholar 

  32. Grange, T., Ferreira, R., Bastard, G.: Phys. Rev. B 76, 241304 (2007)

    Google Scholar 

  33. Stauber, T., Vasilevskiy, M.I.: Phys. Rev. B 79, 113301 (2009)

    Google Scholar 

  34. Guyot-Sionnest, P., Wehrenberg, B., Yu, D.: J. Chem. Phys. 123, 074709 (2005)

    Google Scholar 

  35. Schaller, R.D., Pietryga, J.M., Goupalov, S.V., Petruska, M.A., Ivanov, S.A., Klimov, V.I.: Phys. Rev. Lett. 95, 196401 (2005)

    Google Scholar 

  36. Cooney, R.R., Sewall, S.L., Anderson, K.E.H., Dias, E.A., Kambhampati, P.: Phys. Rev. Lett. 98, 177403 (2007)

    Google Scholar 

  37. Kilina, S.V., Kilin, D.S., Prezhdo, O.V.: ACS Nano 3, 93 (2009)

    Google Scholar 

  38. Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P.: Rev. Mod. Phys. 73, 515 (2001)

    Google Scholar 

  39. Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors. Springer, Berlin (2010)

    MATH  Google Scholar 

  40. The CPMD consortium page, coordinated by M. Parrinello and W. Andreoni, Copyright IBM Corp 1990–2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001. http://www.cpmd.org

  41. Richter, H., Wang, Z.P., Ley, L.: Solid State Commun. 39, 625 (1981)

    Google Scholar 

  42. Madelung, O.: Introduction to Solid-State Theory. Springer, Berlin (1996)

    Google Scholar 

  43. Dacorogna, M.M., Cohen, M.L., Lam, P.K.: Phys. Rev. Lett. 55, 837 (1985)

    Google Scholar 

  44. Lam, P.K., Dacorogna, M.M., Cohen, M.L.: Phys. Rev. B 34, 5065 (1986)

    Google Scholar 

  45. Chang, K.J., Cohen, M.L.: Phys. Rev. B 34, 4552 (1986)

    Google Scholar 

  46. Martin, R.M.: Electronic Structure Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  47. Han, P., Bester, G.: Phys. Rev. B 85, 235422 (2012)

    Google Scholar 

  48. Rau, A.R.P., Zhao, W.: Phys. Rev. A 68, 052102 (2003)

    Google Scholar 

  49. Villas-Bôas, J.M., Ulloa, S.E., Govorov, A.O.: Phys. Rev. B 75, 155334 (2007)

    Google Scholar 

  50. Borges, H.S., Sanz, L., Villas-Bôas, J.M., Alcalde, A.M.: Phys. Rev. B 81, 075322 (2010)

    Google Scholar 

  51. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley, Reading MA (1994)

    Google Scholar 

  52. Bester, G., Han, P.: In: Nagel, W., Kröner, D., Resch, M. (eds.) High Performance Computing in Science and Engineering’11. Springer, Heidelberg (2012)

    Google Scholar 

  53. Han, P., Bester, G.: Phys. Rev. B 91, 085305 (2015)

    Google Scholar 

  54. Tschirner, N., Lange, H., Schliwa, A., Biermann, A., Thomsen, C., Lambert, K., Gomes, R., Hens, Z.: Chem. Mater. 24, 311 (2012)

    Google Scholar 

  55. Cirillo, M., Aubert, T., Gomes, R., Van Deun, R., Emplit, P., Biermann, A., Lange, H., Thomsen, C., Brainis, E., Hens, Z.: Chem. Mater. 26, 1154 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Bester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bester, G., Han, P. (2016). Ab-Initio Calculations of the Vibrational Properties and Dynamical Processes in Semiconductor Nanostructures. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_11

Download citation

Publish with us

Policies and ethics