Skip to main content

Solving the Scattering Problem for the P3HT On-Chain Charge Transport

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

The effect of oxygen impurities and structural imperfections on the coherent on-chain quantum conductance of poly(3-hexylthiophene) is calculated from first principles by solving the scattering problem for molecular structures obtained within density functional theory. It is found that the conductance drops substantially for polymer kinks with curvature radii smaller than 17 Å and rotations in excess of about 60. Oxidation of thiophene group carbon atoms drastically reduces the conductance, whereas the oxidation of the molecular sulfur barely changes the coherent transport properties. Also isomer defects in the coupling along the chain direction are of minor importance for the intrachain transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dang, M.T., Hirsch, L., Wantz, G.: Adv. Mater. 23(31), 3597 (2011). doi:10.1002/adma.201100792

    Article  Google Scholar 

  2. Vukmirovic, N., Wang, L.W.: J. Phys. Chem. B 113(2), 409 (2009). doi:10.1021/jp808360y

    Article  Google Scholar 

  3. McMahon, D.P., Troisi, A.: ChemPhysChem 11(10), 2067 (2010). doi:10.1002/cphc.201000182

    Article  Google Scholar 

  4. Bjorgaard, J.A., Köse, M.E.: J. Phys. Chem. A 117(18), 3869 (2013). doi:10.1021/jp401521j

    Article  Google Scholar 

  5. Vukmirović, N., Wang, L.W.: J. Chem. Phys. 134(9), (2011). doi:10.1063/1.3560956. http://scitation.aip.org/content/aip/journal/jcp/134/9/10.1063/1.3560956

    Article  Google Scholar 

  6. Beenken, W.J.D., Pullerits, T.: J. Phys. Chem. B 108(20), 6164 (2004). doi:10.1021/jp037332l

    Article  Google Scholar 

  7. Kline, R.J., McGehee, M.D.: J. Macromol. Sci. Polym. Rev. 46(1), 27 (2006). doi:10.1080/15321790500471194

    Article  Google Scholar 

  8. Coropceanu, V., Cornil, J., da Silva Filho, D.A, Olivier, Y., Silbey, R., Brédas, J.L.: Chem. Rev. 107(4), 926 (2007). doi:10.1021/cr050140x

    Article  Google Scholar 

  9. Nelson, J., Kwiatkowski, J.J., Kirkpatrick, J., Frost, J.M.: Acc. Chem. Res. 42(11), 1768 (2009). doi:10.1021/ar900119f

    Article  Google Scholar 

  10. Pingel, P., Zen, A., Abellón, R.D., Grozema, F.C., Siebbeles, L.D., Neher, D.: Adv. Funct. Mater. 20(14), 2286 (2010). doi:10.1002/adfm.200902273

    Article  Google Scholar 

  11. Kline, R.J.., McGehee, M.D., Kadnikova, E.N., Liu, J., Fréchet, J.M.J., Toney, M.F.: Macromolecules 38(8), 3312 (2005). doi:10.1021/ma047415f

    Article  Google Scholar 

  12. Crossland, E.J.W., Tremel, K., Fischer, F., Rahimi, K., Reiter, G., Steiner, U., Ludwigs, S.: Adv. Mater. 24(6), 839 (2012). doi:10.1002/adma.201104284

    Article  Google Scholar 

  13. Lan, Y.K., Huang, C.I.: J. Phys. Chem. B 112(47), 14857 (2008). doi:10.1021/jp806967x

    Article  Google Scholar 

  14. Lan, Y.K., Huang, C.I.: J. Phys. Chem. B 113(44), 14555 (2009). doi:10.1021/jp904841j

    Article  Google Scholar 

  15. Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., Salleo, A.: Nat. Mater. 12(11), 1038 (2013). doi:10.1038/nmat3722

    Article  Google Scholar 

  16. Darling, S.B., Sternberg, M.: J. Phys. Chem. B 113(18), 6215 (2009). doi:10.1021/jp808045j

    Article  Google Scholar 

  17. Grozema, F.C., van Duijnen, P.Th., Berlin, Y.A., Ratner, M.A., Siebbeles, L.D.A.: J. Phys. Chem. B 106(32), 7791 (2002). doi:10.1021/jp021114v

    Article  Google Scholar 

  18. Darling, S.B.: J. Phys. Chem. B 112(30), 8891 (2008). doi:10.1021/jp8017919

    Article  Google Scholar 

  19. Jackson, N.E., Savoie, B.M., Kohlstedt, K.L., Marks, T.J., Chen, L.X., Ratner, M.A.: Macromolecules 47(3), 987 (2014). doi:10.1021/ma4023923

    Article  Google Scholar 

  20. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, vol. 3, 8th edn. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  21. Alessandro, T.: Adv. Polym. Sci. 223, 259 (2010)

    Google Scholar 

  22. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Gironcoli, S.D., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: J. Phys. Condens. Mat. 21(39), 395502 (2009). doi:10.1088/0953-8984/21/39/395502

    Google Scholar 

  23. Vanderbilt, D., Phys. Rev. B 41(11), 7892 (1990). doi:10.1103/PhysRevB.41.7892

    Article  Google Scholar 

  24. Kleinman, L., Bylander, D.: Phys. Rev. Lett. 48(20), 1425 (1982). doi:10.1103/PhysRevLett.48.1425

    Article  Google Scholar 

  25. Perdew, J., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77(18), 3865 (1996). doi:10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  26. Perdew, J., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 78(7), 1396 (1997). doi:10.1103/PhysRevLett.78.1396

    Article  Google Scholar 

  27. London, F.: Z. Phys. Chem. Abt. B 11, 222 (1930)

    Google Scholar 

  28. Ortmann, F., Schmidt, W.G., Bechstedt, F.: Phys. Rev. Lett. 95(18), 186101 (2005). doi:10.1103/PhysRevLett.95.186101

    Article  Google Scholar 

  29. Grimme, S.: J. Comput. Chem. 27(15), 1787 (2006). doi:10.1002/jcc.20495

    Article  Google Scholar 

  30. Choi, H.J., Ihm, J., Phys. Rev. B 59(3), 2267 (1999). doi:10.1103/PhysRevB.59.2267

    Article  Google Scholar 

  31. Smogunov, A., Dal Corso, A., Tosatti, E.: Phys. Rev. B 70(4), 045417 (2004). doi:10.1103/PhysRevB.70.045417

    Article  Google Scholar 

  32. Sclauzero, G., Dal Corso, A., Smogunov, A.: Phys. Rev. B 85(16), 165411 (2012). doi:10.1103/PhysRevB.85.165411

    Article  Google Scholar 

  33. Lücke, A., Schmidt, W.G., Rauls, E., Ortmann, F., Gerstmann, U.: J. Phys. Chem. B 119, 6481 (2015)

    Article  Google Scholar 

  34. Grozema, F.C., Siebbeles, L.D.A.: J. Phys. Chem. Lett. 2(23), 2951 (2011). doi:10.1021/jz201229a

    Article  Google Scholar 

  35. Salaneck, W.R., Inganäs, O., Thémans, B., Nilsson, J.O., Sjögren, B., Österholm, J.E., Brédas, J.L., Svensson, S.: J. Chem. Phys. 89(8), 4613 (1988). doi:10.1063/1.454802

    Article  Google Scholar 

  36. Dkhissi, A., Ouhib, F., Chaalane, A., Hiorns, R.C., Dagron-Lartigau, C., Iratcabal, P., Desbrieres, J., Pouchan, C.: Phys. Chem. Chem. Phys. 14(16), 5613 (2012). doi:10.1039/c2cp40170c

    Article  Google Scholar 

  37. Volonakis, G., Tsetseris, L., Logothetidis, S.: Phys. Chem. Chem. Phys. 16(46), 25557 (2014). doi:10.1039/c4cp03203a

    Article  Google Scholar 

  38. Colle, R., Grosso, G., Ronzani, A., Zicovich-Wilson, C.M.: Phys. Status Solidi B 248(6), 1360 (2011). doi:10.1002/pssb.201046429

    Article  Google Scholar 

  39. Alexiadis, O., Mavrantzas, V.G.: Macromolecules 46(6), 2450 (2013). doi:10.1021/ma302211g

    Article  Google Scholar 

  40. Chang, J.F., Clark, J., Zhao, N., Sirringhaus, H., Breiby, D., Andreasen, J., Nielsen, M., Giles, M., Heeney, M., McCulloch, I.: Phys. Rev. B 74(11) (2006). doi:10.1103/PhysRevB.74.115318

    Google Scholar 

  41. Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., Leeuw, D.M.D.: Nature 401(6754), 685 (1999). doi:10.1038/44359

    Article  Google Scholar 

  42. McMahon, D.P., Cheung, D.L., Goris, L., Dacuña, J., Salleo, A., Troisi, A.: J. Phys. Chem. C 115(39), 19386 (2011). doi:10.1021/jp207026s

    Article  Google Scholar 

  43. Lüer, L., Egelhaaf, H.J., Oelkrug, D., Cerullo, G., Lanzani, G., Huisman, B.H., Leeuw, D.D.: Curr. Trends Cryst. Org. Semicond. Growth Model. Fundam. Prop. 5(1–3), 83 (2004). doi:10.1016/j.orgel.2003.12.005. http://www.sciencedirect.com/science/article/pii/S1566119904000059

    Article  Google Scholar 

  44. Liao, H.H., Yang, C.M., Liu, C.C., Horng, S.F., Meng, H.F., Shy, J.T.: J. Appl. Phys. 103(10), 104506 (2008). doi:10.1063/1.2917419

    Article  Google Scholar 

  45. Schafferhans, J., Baumann, A., Wagenpfahl, A., Deibel, C., Dyakonov, V.: Org. Electron. 11(10), 1693 (2010). doi:10.1016/j.orgel.2010.07.016. http://www.sciencedirect.com/science/article/pii/S1566119910002466

    Article  Google Scholar 

  46. Seemann, A., Sauermann, T., Lungenschmied, C., Armbruster, O., Bauer, S., Egelhaaf, H.J., Hauch, J.: Org. Photovolt. Dye Sensitized Sol. Cells 85(6), 1238 (2011). doi:10.1016/j.solener.2010.09.007. http://www.sciencedirect.com/science/article/pii/S0038092X10002999

    Article  Google Scholar 

  47. Sirringhaus, H.: Adv. Mater. 21(38–39), 3859 (2009). doi:10.1002/adma.200901136

    Article  Google Scholar 

  48. Grossiord, N., Kroon, J.M., Andriessen, R., Blom, P.W.M.: Org. Electron. 13(3), 432 (2012). doi:10.1016/j.orgel.2011.11.027. http://www.sciencedirect.com/science/article/pii/S1566119911004046

    Article  Google Scholar 

  49. Chabinyc, M.L., Street, R.A., Northrup, J.E.: Appl. Phys. Lett. 90(12), 123508 (2007). doi:10.1063/1.2715445

    Article  Google Scholar 

  50. Norrman, K., Madsen, M.V., Gevorgyan, S.A., Krebs, F.C.: J. Am. Chem. Soc. 132(47), 16883 (2010). doi:10.1021/ja106299g

    Article  Google Scholar 

Download references

Acknowledgements

The calculations were done using grants of computer time from the Höchstleistungs-Rechenzentrum Stuttgart (HLRS) and the Paderborn Center for Parallel Computing (PC2). The Deutsche Forschungsgemeinschaft (FOR1700, FOR1405, SF-TRR142, SCHM 1361/21) is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lücke, A. et al. (2016). Solving the Scattering Problem for the P3HT On-Chain Charge Transport. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_10

Download citation

Publish with us

Policies and ethics