Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 334 Accesses

Abstract

The optimization of a material requires tuning a single macroscopic property to take on an extreme value by manipulating microscale features. Here we show how artificial evolution can be used as an engine to accomplish this task, even in the absence of explicit relationships between micro-scale physics and bulk properties. As a particular example, we consider the task of designing the bulk mechanical properties of a granular aggregate by way of the constituent particle shape. We use artificial evolution to identify the particle shapes, that when aggregated, produce the stiffest and softest packings plus a packing that stiffens when compressed. These extreme materials are constructed and tested in the real world by 3D printing particles. Finally, we examine how optimization can be a means to extraordinary materials, the starting point for new scientific insights, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arkus, N., Manoharan, V. N., & Brenner, M. P. (2009). Minimal energy clusters of hard spheres with short range attractions. Physical Review Letters, 103(11), 118303.

    Article  ADS  Google Scholar 

  • Athanassiadis, A. G., Miskin, M. Z., Kaplan, P., Rodenberg, N., Lee, S. H., Merritt, J., Brown, E., Amend, J., Lipson, H., & Jaeger, H. M. (2014). Particle shape effects on the stress response of granular packings. Soft Matter, 10(1), 48–59.

    Article  ADS  Google Scholar 

  • Baker, J., & Kudrolli, A. (2010). Maximum and minimum stable random packings of platonic solids. Physical Review E, 82(6), 061304.

    Article  ADS  MathSciNet  Google Scholar 

  • Brown, E., Nasto, A., Athanassiadis, A. G., & Jaeger, H. M. (2012). Strain-stiffening in random packings of entangled granular chains. Physical Review Letters, 108, 108302.

    Article  ADS  Google Scholar 

  • Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.

    Article  Google Scholar 

  • Duran, J. (1999). Sands, powders, and grains: An introduction to the physics of granular materials. Berlin: Springer.

    Google Scholar 

  • Galindo-Torres, S. A., Alonso-Marroquin, F., Wang, Y. C., Pedroso, D., & Munoz Castano, J. D. (2009). Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity. Physical Review E, 79, 060301.

    Article  ADS  Google Scholar 

  • Glotzer, S. C., Horsch, M. A., Iacovella, C. R., Zhang, Z., Chan, E. R., & Zhang, X. (2005). Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Current Opinion in Colloid and Interface Science, 10(5), 287–295.

    Article  Google Scholar 

  • Hoy, R. S., Harwayne-Gidansky, J., & O’Hern, C. S. (2012). Structure of finite sphere packings via exact enumeration: Implications for colloidal crystal nucleation. Physical Review E, 85(5), 051403.

    Article  ADS  Google Scholar 

  • Jaeger, H. M., Nagel, S. R., & Behringer, R. P. (1996). Granular solids, liquids, and gases. Reviews of Modern Physics, 68(4), 1259–1273.

    Article  ADS  Google Scholar 

  • Jain, A., Bollinger, J. A., & Truskett, T. M. (2014). Inverse methods for material design. American Institute of Chemical Engineers Journal, 60(8), 2732–2740.

    Article  Google Scholar 

  • Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., & Wassgren, C. (2009). Force model considerations for glued-sphere discrete element method simulations. Chemical Engineering Science, 64(15), 3466–3475.

    Article  Google Scholar 

  • Liu, A. J., & Nagel, S. R. (2010). The jamming transition and the marginally jammed solid. Annual Review of Condensed Matter Physics, 1, 347–369. Annual Reviews.

    Google Scholar 

  • Miskin, M. Z., & Jaeger, H. M. (2013). Adapting granular materials through artificial evolution. Nature Materials, 12(4), 326–331.

    Article  ADS  Google Scholar 

  • Pena, A. A., Garcia-Rojo, R., & Herrmann, H. J. (2007). Influence of particle shape on sheared dense granular media. Granular Matter, 9(3–4), 279–291.

    Article  MATH  Google Scholar 

  • Poschel, T., & Brilliantov, N. V. (2003). Granular gas dynamics (Vol. 624). Berlin/Heidelberg: Springer.

    MATH  Google Scholar 

  • Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329–1364.

    Article  Google Scholar 

  • Schreck, C. F., Xu, N., & O’Hern, C. S. (2010). A comparison of jamming behavior in systems composed of dimer- and ellipse-shaped particles. Soft Matter, 6(13), 2960–2969.

    Article  ADS  Google Scholar 

  • Sloane, N. J. A., Hardin, R. H., Duff, T. D. S., & Conway, J. H. (1995). Minimal-energy clusters of hard-spheres. Discrete and Computational Geometry, 14(3), 237–259.

    Article  MathSciNet  MATH  Google Scholar 

  • Tolley, M. T., & Lipson, H. (2011). On-line assembly planning for stochastically reconfigurable systems. International Journal of Robotics Research, 30(13), 1566–1584.

    Article  Google Scholar 

  • Torquato, S. (2009). Inverse optimization techniques for targeted self-assembly. Soft Matter, 5(6), 1157–1173.

    Article  ADS  Google Scholar 

  • Wood, D. M. (1990). Soil behavior and critical state soil mechanics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miskin, M.Z. (2016). Optimization. In: The Automated Design of Materials Far From Equilibrium. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-24621-5_3

Download citation

Publish with us

Policies and ethics