Skip to main content

Indicators for Ionic Copper in Biology

  • Chapter
  • First Online:
  • 977 Accesses

Part of the book series: Reviews in Fluorescence ((RFLU,volume 8))

Abstract

Despite its status as a trace element in many organisms, copper is garnering increased interest for its biological functions and potential roles in many diseases. This review summarizes recent progress in the use of fluorescent indicators for determining copper ions in a variety of biological matrices. Following a brief summary of the chemistry and biology of Cu(I) and Cu(II), the review covers both organic fluorescent indicators as well as biologically derived fluorescent indicators or sensors. The future outlook for improved indicators and sensors is discussed.

We very much regret that it was not possible to discuss all the important developments in fluorescence-based copper sensors within this limited space, so we focused upon those that seemed of greatest interest to us. We ask forgiveness from the many creative investigators whose work could not be included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bertini I, Sigel A et al (eds) (2001) Handbook on metalloproteins. Marcel Dekker, New York

    Google Scholar 

  2. Bozym RA, Thompson RB et al (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1(2):103–111

    Article  CAS  PubMed  Google Scholar 

  3. Burdette SC, Walkup GK et al (2001) Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution. J Am Chem Soc 123(32):7831–7841

    Article  CAS  PubMed  Google Scholar 

  4. Bush AI, Pettingell WH et al (1994) Rapid induction of Alzheimer AB amyloid formation by zinc. Science 265:1464–1467

    Article  CAS  PubMed  Google Scholar 

  5. Carter KP, Young AM et al (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114(8):4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaudry AF, Verma M et al (2010) Kinetically controlled photoinduced electron transfer switching in Cu(I)-responsive fluorescent probes. J Am Chem Soc 132:737–747

    Article  Google Scholar 

  7. Cherny RA, Atwood CS et al (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Article  CAS  PubMed  Google Scholar 

  8. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. Wiley-Interscience, New York

    Google Scholar 

  9. Culotta VC, Gitlin JD (2001) Disorders of copper transport. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 2, 8th edn. McGraw-Hill, New York, pp 3105–3126

    Google Scholar 

  10. Domaille DW, Zeng L et al (2010) Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescence sensor. J Am Chem Soc 132:1194–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dongen EMWMv, Evers TH et al (2007) Variation of linker length in ratiometric fluorescent sensor proteins allows rational tuning of Zn(II) affinity in the picomolar to femtomolar range. J Am Chem Soc 129:3494–3495

    Article  PubMed  Google Scholar 

  12. Eis PS, Lakowicz JR (1993) Time-resolved energy transfer measurements of donor-acceptor distance distributions and intramolecular flexibility of a CCHH zinc finger peptide. Biochemistry 32:7981–7993

    Article  CAS  PubMed  Google Scholar 

  13. Fahrni CJ (2013) Synthetic fluorescent probes for monovalent copper. Curr Opin Chem Biol 17(4):656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fernandez-Gutierrez A, Munoz de la Pena A (1985) Determinations of inorganic substances by luminescence methods. In: Schulman SG (ed) Molecular luminescence spectroscopy, Part I: Methods and applications, vol 77. Wiley-Interscience, New York, pp 371–546

    Google Scholar 

  15. Forster T (1948) Intermolecular energy migration and fluorescence (Ger.). Ann Phys 2:55–75

    Article  CAS  Google Scholar 

  16. Grynkiewicz G, Poenie M et al (1985) A new generation of calcium indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  17. Harford C, Sarkar B (1997) Amino-terminal Cu(II) and Ni(II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc Chem Res 30:123–130

    Article  CAS  Google Scholar 

  18. Haugland RP (2005) The handbook: a guide to fluorescent probes and labeling technologies. Invitrogen Corp, Carlsbad

    Google Scholar 

  19. Hawkins BE, Frederickson CJ et al (2012) Fluorophilia: Fluorophore-containing compounds adhere non-specifically to injured neurons. Brain Res 1432:28–35

    Article  CAS  PubMed  Google Scholar 

  20. Hirayama T, Van de Bittner GC et al (2012) Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc Natl Acad Sci 109(7):2228–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hung YH, Bush AI et al (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76

    Article  CAS  PubMed  Google Scholar 

  22. Hunt JA, Ahmed M et al (1999) Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic amino acids. Biochemistry 38:9054–9060

    Article  CAS  PubMed  Google Scholar 

  23. Johnson KS, Elrod VA et al (2000) Continuous flow techniques for on site and in situ measurements of metals and nutrients in sea water. In: Buffle J, Horvai G (eds) In situ monitoring of aquatic systems. Wiley, Chichester, pp 223–252

    Google Scholar 

  24. Kaplan JH, Lutsenko S (2009) Copper transport in mammalian cells: special care for a metal with special needs. J Biol Chem 284(38):25461–25465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiefer LL, Paterno SA et al (1995) Second shell hydrogen bonds to histidine ligands enhance zinc affinity and catalytic efficiency. J Am Chem Soc 117:6831–6837

    Article  CAS  Google Scholar 

  26. Kolb DA, Weber G (1975) Cooperativity of binding of anilinonaphthalenesulfonate to serum albumin induced by a second ligand. Biochemistry 14(20):4476–4481

    Article  CAS  PubMed  Google Scholar 

  27. Krezel A, Maret W (2006) Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11:1049–1062

    Article  CAS  PubMed  Google Scholar 

  28. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  29. Lakowicz JR, Szmacinski H et al (1992) Fluorescence lifetime imaging. Anal Biochem 202:316–330

    Article  CAS  PubMed  Google Scholar 

  30. Lakowicz JR, Szmacinski H et al (1993) Fluorescence lifetime-based sensing: applications to clinical chemistry and cellular imaging. In: SPIE Conference on Ultrasensitive Laboratory Diagnostics, Los Angeles, SPIE

    Google Scholar 

  31. Landero Figueroa JA, Subramanian Vignesh K et al (2014) Selectivity and specificity of small molecule fluorescent dyes/probes used for the detection of Zn2+ and Ca2+ in cells. Metallomics 6(2):301–315

    Article  CAS  PubMed Central  Google Scholar 

  32. Li Y, Maret W (2008) Human metallothionein metallomics. J Anal At Spectrosc 23:1055–1062

    Article  CAS  Google Scholar 

  33. Liang J, Guo L et al (2014) Genetically encoded red fluorescent copper(I) sensors for cellular copper(I) imaging. Biochem Biophys Res Commun 443(3):894–898

    Article  CAS  PubMed  Google Scholar 

  34. Lin W, Yuan L et al (2009) Construction of fluorescent probes via protection/deprotection of functional groups: a ratiometric fluorescent probe for Cu2+. Chem Eur J 15:1030–1035

    Article  CAS  PubMed  Google Scholar 

  35. Linder MC (1991) Biochemistry of Copper. Plenum, New York

    Book  Google Scholar 

  36. Lindskog S, Nyman PO (1964) Metal-binding properties of human erythrocyte carbonic anhydrases. Biochim Biophys Acta 85:462–474

    CAS  PubMed  Google Scholar 

  37. Lippitsch ME, Pusterhofer J et al (1988) Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier. Anal Chim Acta 205:1–6

    Article  CAS  Google Scholar 

  38. Liu J, Karpus J et al (2013) Genetically encoded Copper(I) reporters with improved response for use in imaging. J Am Chem Soc 135(8):3144–3149

    Article  CAS  PubMed  Google Scholar 

  39. Malmstadt HV, Enke CG et al (1974) Electronic measurements for scientists. W.A. Benjamin, Inc., Menlo Park

    Google Scholar 

  40. McCall KA (2000) Metal Ion specificity and avidity in carbonic anhydrase variants. Doctoral, Duke University

    Google Scholar 

  41. McCranor BJ, Szmacinski H et al (2014) Fluorescence lifetime imaging of physiological free Cu(II) levels in live cells with a Cu(II)-selective carbonic anhydrase-based biosensor. Metallomics 6(5):1034–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miyawaki A, Llopis J et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  43. Morgan MT, Bagchi P et al (2011) Designed to dissolve: suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone. J Am Chem Soc 133(40):15906–15909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pfeiffer RF (2007) Wilson’s disease. Semin Neurol 27:123–132

    Article  PubMed  Google Scholar 

  45. Pinsky BG, Ladasky JJ et al (1993) Phase-resolved fluorescence lifetime measurements for flow cytometry. Cytometry 14(2):123–135

    Article  CAS  PubMed  Google Scholar 

  46. Prince RC, Gunson DE (1998) Prions are copper-binding proteins. Trends Biochem Sci 23(6):197–198

    Article  CAS  PubMed  Google Scholar 

  47. Pufahl RA, Singer CP et al (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx I. Science 278:853–856

    Article  CAS  PubMed  Google Scholar 

  48. Qi X, Jun EJ et al (2006) New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+. J Org Chem 71:2881–2884

    Article  CAS  PubMed  Google Scholar 

  49. Quinn JF, Crane S et al (2009) Copper in ALzheimer’s disease: too much or too little? Expert Rev Neurother 9(5):631–637

    Article  CAS  PubMed  Google Scholar 

  50. Rae TD, Schmidt PJ et al (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  CAS  PubMed  Google Scholar 

  51. Riordan JF, Vallee BL (eds) (1991) Metallobiochemistry Part B: Metallothionein and related molecules, Methods in enzymology. Academic, San Diego

    Google Scholar 

  52. Rolinski OJ, Birch DJS (1999) A fluorescence lifetime sensor for Cu(I) ions. Meas Sci Technol 10:127–136

    Article  CAS  Google Scholar 

  53. Rosenzweig AC (2002) Metallochaperones: bind and deliver. Chem Biol 9:673–677

    Article  CAS  PubMed  Google Scholar 

  54. Singhal NK, Ramanujam B et al (2006) Carbohydrate-based switch-on molecular sensor for Cu(II) in buffer: absorption and fluorescence study of the selective recognition of Cu(II) ions by galactosyl derivatives in HEPES buffer. Org Lett 8(16):3525–3528

    Article  CAS  PubMed  Google Scholar 

  55. Stevens HM (1959) The effect of the electronic structure of the cation upon fluorescence in metal-8-hydroxyquinoline complexes. Anal Chim Acta 20:389–396

    Article  CAS  Google Scholar 

  56. Stillman MJ, Gasyna Z (1991) Luminescence spectroscopy of metallothioneins. In: Riordan JF, Vallee BL (eds) Metallobiochemistry Part B: Metallothionein and related proteins, vol 205, Methods in Enzymology. Academic, San Diego, pp 540–555

    Chapter  Google Scholar 

  57. Szmacinski H, Lakowicz JR (1993) Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry. Anal Chem 65:1668–1674

    Article  CAS  PubMed  Google Scholar 

  58. Szmacinski H, Lakowicz JR (1994) Lifetime-based sensing. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing. Plenum, New York, pp 295–334

    Google Scholar 

  59. Szmacinski H, Lakowicz JR et al (1994) Fluorescence lifetime imaging microscopy: homodyne technique using high-speed gated image intensifier. In: Johnson ML, Brand L (eds) Numerical computer methods, vol 240. Academic, New York, pp 723–748

    Google Scholar 

  60. Taki M, Iyoshi S et al (2010) Development of highly sensitive fluorescent probes for detection of intracellualr copper (I) in living systems. J Am Chem Soc 132:5938–5939

    Article  CAS  PubMed  Google Scholar 

  61. Thompson RB (2008) Fluorescence lifetime biosensing: entering the mainstream. In: Ligler FS, Taitt CR (eds) Optical biosensors: today and tomorrow. Elsevier, Amsterdam, pp 287–315

    Chapter  Google Scholar 

  62. Thompson RB, Ge Z et al (1996) Fiber optic biosensor for Co(II) and Cu(II) based on fluorescence energy transfer with an enzyme transducer. Biosens Bioelectron 11(6):557–564

    Article  CAS  Google Scholar 

  63. Thompson RB, Maliwal BP et al (1998) Determination of picomolar concentrations of metal ions using fluorescence anisotropy: biosensing with a “reagentless” enzyme transducer. Anal Chem 70(22):4717–4723

    Article  CAS  PubMed  Google Scholar 

  64. Thompson RB, Maliwal BP et al (1999) Selectivity and sensitivity of fluorescence lifetime-based metal ion biosensing using a carbonic anhydrase transducer. Anal Biochem 267:185–195

    Article  CAS  PubMed  Google Scholar 

  65. Thompson RB, Patchan MW (1995) Lifetime-based fluorescence energy transfer biosensing of zinc. Anal Biochem 227:123–128

    Article  CAS  PubMed  Google Scholar 

  66. Thompson RB, Peterson D et al (2002) Fluorescent zinc indicators for neurobiology. J Neurosci Methods 118:63–75

    Article  CAS  PubMed  Google Scholar 

  67. Thompson RB, Walt DR (1994) Emerging strategies for molecular biosensors. Naval Res Rev 46(3):19–29

    Google Scholar 

  68. Torrado A, Walkup GK et al (1998) Exploiting polypeptide motifs for the design of selective Cu(II) ion chemosensors. J Am Chem Soc 120:609–610

    Article  CAS  Google Scholar 

  69. Turel M, Duerkop A et al (2009) Detection of nanomolar concentrations of copper(II) with a Tb-quinoline-2-one probe using luminescence quenching or luminescence decay time. Anal Chim Acta 644:53–60

    Article  CAS  PubMed  Google Scholar 

  70. Turro NJ (1978) Modern molecular photochemistry. Benjamin/Cummings Publishing Co., Menlo Park

    Google Scholar 

  71. Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem 284(2):717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weber G (1953) Rotational Brownian motion and polarization of the fluorescence of solutions. Adv Protein Chem 8:415–459

    Article  CAS  PubMed  Google Scholar 

  73. Wegner SV, Arslan H et al (2010) Dynamic copper(I) imaging in mammalian cells with a genetically encoded fluorescent copper(I) sensor. J Am Chem Soc 132:2567–2569

    Article  CAS  PubMed  Google Scholar 

  74. White CE, Argauer RJ (1970) Fluorescence analysis: a practical approach. Marcel Dekker, New York

    Google Scholar 

  75. Wilmarth KR, Froines JR (1992) In vitro and in vivo inhibition of lysyl oxidase by aminopropionitriles. J Toxicol Environ Health 37(3):411–423

    Article  CAS  PubMed  Google Scholar 

  76. Xiang Y, Tong A et al (2006) New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org Lett 8(13):2863–2866

    Article  CAS  PubMed  Google Scholar 

  77. Xie J, Menand M et al (2007) Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II). J Org Chem 72:5980–5985

    Article  CAS  PubMed  Google Scholar 

  78. Yang L, McRae R et al (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy. Proc Natl Acad Sci U S A 102(32):11179–11184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zeng HH, Thompson RB et al (2003) Real-time determination of picomolar free Cu(II) in seawater using a fluorescence-based fiber optic biosensor. Anal Chem 75(24):6807–6812

    Article  CAS  PubMed  Google Scholar 

  80. Zeng L, Miller EW et al (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao J, Bertoglio BA et al (2009) The interaction of biological and noxious transition metals with the zinc probes FluoZin-3 and Newport Green. Anal Biochem 384:34–41

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all of our co-workers who did the work described herein, as well as the National Institutes of Health, National Science Foundation, Office of Naval Research, and National Oceanic and Atmospheric Administration for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thompson, R.B., Zeng, H.H. (2016). Indicators for Ionic Copper in Biology. In: Geddes, C. (eds) Reviews in Fluorescence 2015. Reviews in Fluorescence, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-24609-3_6

Download citation

Publish with us

Policies and ethics