Skip to main content

Elongated Nanostructured Solar Cells with a Plasmonic Core

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

  • 1653 Accesses

Abstract

In this chapter the effects of the plasmonic response in an elongated nano-scale solar cell with a silver nanoneedle core are explored by measuring photocurrents. The silver nanoneedles formed the support of a conformally grown hydrogenated amorphous silicon (a-Si:H) n-i-p junction around it. A spherical morphology of the solar cell functions as a nano-lens, focusing incoming light directly on the plasmonic silver nanoneedle. We found that plasmonics, geometric optics, and Fresnel reflections affect the nanostructured solar cell performance, depending strongly on light incidence angle and polarization. Besides the plasmonic effects, nano-focusing, and orthogonalization of carrier and photon pathways are simultaneously present at illumination of this structure. In this chapter the photovoltaics characterization techniques and simulations are explained and discussed as well. This work provides valuable insight in solar cell processes in which novel concepts such as plasmonics, elongated nanostructures, and nano-lenses are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green MA (2003) Third generation photovoltaics: ultra high efficiency at low cost. Springer, Berlin

    Google Scholar 

  2. Conibeer G (2007) Third-generation photovoltaics. Mater Today 10:42

    Article  CAS  Google Scholar 

  3. Ozbay E (2009) Merging photonics and electronics at nanoscale dimensions. Science 311:189

    Article  Google Scholar 

  4. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater H (2001) Plasmonics–a route to nanoscale optical devices. Adv Mater 13:1501

    Article  CAS  Google Scholar 

  5. Maier SA (2007) Plasmonics fundamentals and applications. Springer, New York

    Google Scholar 

  6. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  CAS  PubMed  Google Scholar 

  7. Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504

    Article  CAS  Google Scholar 

  8. Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mat Sol C 94:1481

    Google Scholar 

  9. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106

    Article  Google Scholar 

  10. Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519

    Article  CAS  Google Scholar 

  11. Ferry VE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22:4794

    Article  CAS  PubMed  Google Scholar 

  12. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093195

    Article  Google Scholar 

  13. Stuart HR, Hal DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73:3815

    Article  CAS  Google Scholar 

  14. Stuart HR, Hal DG (1996) Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett 69:2327–2329

    Article  CAS  Google Scholar 

  15. Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley-VCH, Weinheim

    Google Scholar 

  16. Purcell E (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Article  Google Scholar 

  17. Novotny L, Hecht B (2008) Principles of nano-optics. Cambridge University Press, Cambridge

    Google Scholar 

  18. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002

    Article  PubMed  Google Scholar 

  19. Govorov AO, Bryant GW, Zhang W, Skeini T, Lee J, Kotov NA, Slocik JM, Naik RA (2006) Exciton-plasmon interaction and hybrid excitons in semiconductor–metal nanoparticle assemblies. Nano Lett 6:984–994

    Article  CAS  Google Scholar 

  20. Clapp AR, Medintz IL, Mattoussi H (2005) Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7:47

    Article  Google Scholar 

  21. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:109

    Article  CAS  Google Scholar 

  23. Stenzel O, Stendal A, Voigtsberger K, von Borczyskowski C (1995) Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Sol Energy Mat Sol C 37:337

    Article  CAS  Google Scholar 

  24. Westphalen M, Kreibig U, Rostalski J, Lüth H, Meissner D (2000) Metal cluster enhanced organic solar cells. Sol Energy Mat Sol C 61:97–105

    Article  CAS  Google Scholar 

  25. Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in … nanoparticle plasmon modes. Opt Express 17:10195–10205

    Article  CAS  PubMed  Google Scholar 

  26. Barnard ES, Pala RA, Brongersma ML (2011) Photocurrent mapping of near-field optical antenna resonances. Nat Nanotechnol 6:588–593

    Article  CAS  PubMed  Google Scholar 

  27. Ferry VE, Verschuuren MA, Li HBT, Verhagen E, Walters RJ, Schropp REI, Atwater HA, Polman A (2010) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237–A245

    Article  CAS  PubMed  Google Scholar 

  28. Ferry VE, Verschuuren MA, van Lare MC, Schropp REI, Atwater HA, Polman A (2011) Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells. Nano Lett 11:4239–4245

    Article  CAS  PubMed  Google Scholar 

  29. Kuang Y, van der Werf KHM, Houweling ZS, Schropp REI (2011) Nanorod solar cell with an ultrathin a-Si:H absorber layer. Appl Phys Lett 98:113111

    Article  Google Scholar 

  30. Tassin P, Koschny T, Kafesaki M, Soukoulis CMA (2012) Comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat Photonics 6:259–264

    Article  CAS  Google Scholar 

  31. Kuang Y, Di Vece M, Rath JK, van Dijk L, Schropp REI (2013) Elongated nanostructures for radial junction solar cells. Rep Prog Phys 76:106502

    Article  PubMed  Google Scholar 

  32. Naughton MJ, Kempa K, Ren ZF, Gao Y, Rybczynski J, Argenti N, Gao W, Wang Y, Peng Y, Naughton JR, McMahon G, Paudel T, Lan YC, Burns MJ, Shepard A, Clary M, Ballif C, Haug FJ, Söderström T, Cubero O, Eminian C (2010) Efficient nanocoax-based solar cells. Phys Status Solidi R 4:181–183

    Article  CAS  Google Scholar 

  33. Zhu J, Yu Z, Burkhard GF, Hsu CM, Connor ST, Xu Y, Wang Q, McGhee M, Fan S, Cui Y (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 9:279–282

    Article  PubMed  Google Scholar 

  34. Lu Y, Lal A (2010) High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett 10:4651–4656

    Article  CAS  PubMed  Google Scholar 

  35. Zhu J, Hsu CM, Yu Z, Fan S, Cui Y (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10:1979–1984

    Article  CAS  PubMed  Google Scholar 

  36. Fan Z, Razavi H, Do J, Moriwaki A, Ergen O, Chueh YL, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S, Yu K, Wu M, Ager JW, Javey A (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 8:648–653

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Yu HY, Wong SM, Zhang G, Sun X, Lo PGQ, Kwong DL (2009) Si nanopillar array optimization on Si thin films for solar energy harvesting. Appl Phys Lett 95:033102

    Article  Google Scholar 

  38. Kayes BM, Atwater HA, Lewis NS (2005) Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. Appl Phys 97:114302

    Article  Google Scholar 

  39. Spurgeon JM, Atwater HA, Lewis NSJ (2008) A comparison between the behavior of nanorod array and planar Cd (Se, Te) photoelectrodes. Phys Chem C 112:6186–6193

    Article  CAS  Google Scholar 

  40. Kieven D, Dittrich T, Belaidi A, Tornow J, Schwarzburg K, Allsop N, Lux-Steiner M (2008) Effect of internal surface area on the performance of ZnO/In[sub 2]S[sub 3]/CuSCN solar cells with extremely thin absorber. Appl Phys Lett 92:153107

    Article  Google Scholar 

  41. Belaidi A, Dittrich T, Kieven D, Tornow J, Schwarzburg K, Lux-Steiner M (2008) Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells. Phys Status Solidi R 2:172–174

    Article  CAS  Google Scholar 

  42. Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen SH (2009) Silicon nanowire-based solar cells on glass: synthesis, optical Properties, and cell parameters. Nano Lett 9:1549–1554

    Article  CAS  PubMed  Google Scholar 

  43. Tsakalakos L, Balch J, Fronheiser J, Korevaar BA, Sulima O, Rand J (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117

    Article  Google Scholar 

  44. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455

    Article  CAS  PubMed  Google Scholar 

  45. Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  CAS  PubMed  Google Scholar 

  46. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889

    Article  CAS  PubMed  Google Scholar 

  47. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087

    Article  CAS  PubMed  Google Scholar 

  48. Di Vece M, Kuang Y, van Duren S, Charry JM, van Dijk L, Schropp REI (2012) Plasmonic nano-antenna a-Si:H solar cell. Opt Express 20:27327

    Article  PubMed  Google Scholar 

  49. Schropp REI (2001) Status of Cat-CVD (hot-wire CVD) research in Europe. Thin Solid Films 395:17–24

    Article  CAS  Google Scholar 

  50. Di Vece M, Kelly JJ (2003) Synthesis and characterization of Pd nano-pillar arrays in the metal hydride switchable mirror. MRS Proc 776:Q11.7

    Google Scholar 

  51. Schropp REI, Feenstra KF, Molenbroek EC, Meiling H, Rath JK (1997) Device-quality polycrystalline and amorphous silicon films by hot-wire chemical vapour deposition. Philos Mag B 76:309–321

    Article  CAS  Google Scholar 

  52. van Veen MK, van der Werf CHM, Rath JK, Schropp REI (2003) Incorporation of amorphous and microcrystalline silicon in n–i–p solar cells. Thin Sol Film 430:216–219

    Article  Google Scholar 

  53. van Veen MK (2003) Tandem solar cells deposited using hot-wire chemical vapor deposition, PhD thesis, Utrecht

    Google Scholar 

  54. Shlager KL, Schneider JB (1995) A selective survey of the finite-difference time domain literature. IEEE Antenna Propag M 37:39–57

    Google Scholar 

  55. Yee K, IEEE T (1966) Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media. Antenna Propog 14:302–307

    Google Scholar 

  56. FDTD (2012) Lumerical Solutions, Inc.

    Google Scholar 

  57. Schneider J (2012) Understanding the finite-difference time-domain method, unpublished. www.eecs.wsu.edu/~schneidj/ufdtd, 2010

  58. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  59. Messinger BJK, von Raben U, Chang RK, Barber PW (1981) Local fields at the surface of noble-metal microspheres. Phys Rev B 24:649–657

    Article  CAS  Google Scholar 

  60. Encina ER, Perassi EM, Coronado EA (2009) Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires. J Phys Chem A113:4489–4497

    Article  Google Scholar 

  61. Ramadurgam S, Lin TG, Yang C (2014) Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells. Nano Lett 14:4517–4522

    Article  CAS  PubMed  Google Scholar 

  62. Ekinci Y, Solak HH, Löffler JF (2008) Plasmon resonances of aluminum nanoparticles and nanorods. J Appl Phys 104:083107

    Article  Google Scholar 

  63. Langhammer C, Schwind M, Kasemo B, Zorić I (2008) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8:1461–1471

    Article  CAS  PubMed  Google Scholar 

  64. Tan SJ, Zhang L, Zhu D, Goh XM, Wang YM, Kumar K, Qiu CW, Yang JKW (2014) Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14:4023–4029

    Article  CAS  PubMed  Google Scholar 

  65. Olsona J, Manjavaca A, Liub L, Changa WC, Foerstera B, King NS, Knight MW, Nordlander P, Halas NJ, Link S (2014) Vivid, full-color aluminum plasmonic pixels. Proc Natl Acad Sci U S A 111:14348–14353

    Article  Google Scholar 

  66. Knight MW, Liu L, Wang Y, Brown L, Mukherjee S, King NS, Everitt HO, Nordlander P, Halas NJ (2012) Aluminum plasmonic nanoantennas. Nano Lett 12:6000–6004

    Article  CAS  PubMed  Google Scholar 

  67. Temple TL, Bagnall DM (2011) Optical properties of gold and aluminium nanoparticles for silicon solar cell applications. J Appl Phys 109:084343

    Article  Google Scholar 

  68. Akimov YA, Koh WS (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6:155–161

    Article  CAS  Google Scholar 

  69. Oener SZ, Mann SA, Sciacca B, Sfiligoj C, Hoang J, Garnett AC (2015) Au-Cu2O core-shell nanowire photovoltaics. Appl Phys Lett 106:023501

    Article  Google Scholar 

  70. Biteen JS, Pacifici D, Lewis NS, Atwater HA (2005) Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. Nano Lett 5:1768–1773

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Di Vece .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Di Vece, M. (2016). Elongated Nanostructured Solar Cells with a Plasmonic Core. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_9

Download citation

Publish with us

Policies and ethics