Skip to main content

Interaction of Surface Plasmon Polaritons with Nanomaterials

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

Abstract

Surface plasmon polaritons are the surface electromagnetic excitations that exist at the metal-air or metal-dielectric interface. Because of their enhanced field and strong confinement near the metal surface, they offer variety of applications ranging from high sensitivity sensors to miniaturized photonic components. In this chapter, we present analytical formalisms of several optical phenomenon that occur in their interaction with nanomaterials and analyze their significance in absorption, enhanced Raman scattering, electron acceleration, optical fiber sensors etc. First, we discuss dispersion properties of surface plasmon polaritons in single and double metal film configurations. The analysis is extended to the examination of dispersion properties of multilayer thin film configurations. We also present dispersion properties of surface plasmon polaritons in thin film metal coated optical fibers and develop an analytical formalism for the calculation of amplitude of the laser mode converted surface plasmon wave. The chapter also presents a theoretical model for surface plasmon polariton assisted electron acceleration in thin film metal configuration. Furthermore, surface plasmon polariton interactions with metallic nanoparticles are examined and analytical formalism of their anomalous absorption by nanoparticles is presented. In this context, we present surface plasmon assisted surface enhanced Raman scattering by the molecules when they are adsorbed on nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3):131–314; (b) Raether H (1988) Surface plasmons on smooth surfaces. Springer, Berlin Heidelberg; (c) Agranovich VM, Mills DL (1982) Surface Polaritons. Elsevier, North-Holland, Amsterdam.

    Google Scholar 

  2. Wood R (1902) XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond Edinb Dublin Philos Mag J Sci 4(21):396–402

    Article  Google Scholar 

  3. Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil Mag 4:396–402

    Article  Google Scholar 

  4. Fano U (1941) The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA 31(3):213–222

    Article  Google Scholar 

  5. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216(4):398–410

    Article  CAS  Google Scholar 

  6. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch A 23(12):2135–2136

    Article  CAS  Google Scholar 

  7. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3(9):601–605

    Article  CAS  PubMed  Google Scholar 

  8. (a) Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830; (b) Genet C, Ebbesen T (2007) Light in tiny holes. Nature 445(7123):39–46; (c) Klimov V, Ducloy M, Letokhov V (2002) A model of an apertureless scanning microscope with a prolate nanospheroid as a tip and an excited molecule as an object. Chem Phys Lett 358(3):192–198; (d) Krupin O, Asiri H, Wang C, Tait RN, Berini P (2013) Biosensing using straight long-range surface plasmon waveguides. Opt Express 21(1): 698–709

    Google Scholar 

  9. Saito H, Namura K, Suzuki M, Kurata H (2014) Dispersion relations for coupled surface plasmon-polariton modes excited in multilayer structures. Microscopy 63(1):85–93

    Article  CAS  PubMed  Google Scholar 

  10. Sheng P, Stepleman RS, Sanda PN (1982) Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations. Phys Rev B 26(6):2907–2916

    Article  CAS  Google Scholar 

  11. Stockman MI, Faleev SV, Bergman DJ (2001) Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? Phys Rev Lett 87(16):167401

    Article  CAS  PubMed  Google Scholar 

  12. Davis TJ (2009) Surface plasmon modes in multi-layer thin-films. Opt Commun 282(1):135–140

    Article  CAS  Google Scholar 

  13. Stoian R, Rosenfeld A, Ashkenasi D, Hertel I, Bulgakova N, Campbell E (2002) Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys Rev Lett 88(9):097603

    Article  CAS  PubMed  Google Scholar 

  14. (a) Kumar G, Tripathi V (2007) Anomalous absorption of surface plasma wave by particles adsorbed on metal surface. Appl Phys Lett 91(16):161503; (b) Mishra Y, Adelung R, Kumar G, Elbahri M, Mohapatra S, Singhal R, Tripathi A, Avasthi D (2013) Formation of self-organized silver nanocup-type structures and their plasmonic absorption. Plasmonics 8(2):811–815

    Google Scholar 

  15. Vorobyev A, Guo C (2005) Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys Rev Ser B 72(19):195422

    Article  Google Scholar 

  16. (a) Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal Chem 78(12):3859–3874; (b) Chau L-K, Lin Y-F, Cheng S-F, Lin T-J (2006) Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sensors Actuators B Chem 113(1):100–105

    Google Scholar 

  17. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54(1):3–15

    Article  CAS  Google Scholar 

  18. (a) Lucotti A, Zerbi G (2007) Fiber-optic SERS sensor with optimized geometry. Sensors Actuators B Chem 121(2):356–364; (b) Liu C, Kumar G, Tripathi V (2006) Laser mode conversion into a surface plasma wave in a metal coated optical fiber. J Appl Phys 100(1):013304

    Google Scholar 

  19. Liu CS, Tripathi VK (1998) Diffraction-limited laser excitation of a surface plasma wave and its scattering on a rippled metallic surface. Quantum Electron IEEE J 34(8):1503–1507

    Article  CAS  Google Scholar 

  20. Liu C, Kumar G, Singh D, Tripathi V (2007) Electron acceleration by surface plasma waves in double metal surface structure. J Appl Phys 102(11):113301

    Article  Google Scholar 

  21. Zawadzka J, Jaroszynski DA, Carey JJ, Wynne K (2001) Evanescent-wave acceleration of ultrashort electron pulses. Appl Phys Lett 79(14):2130–2132

    Article  CAS  Google Scholar 

  22. (a) Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53(19):4756–4795; (b) Kumar G, Singh D, Tripathi V (2006) Surface enhanced Raman scattering of a surface plasma wave. J Phys D Appl Phys 39(20):4436

    Google Scholar 

  23. Lombardi JR, Birke RL, Lu T, Xu J (1986) Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. J Chem Phys 84(8):4174–4180

    Article  CAS  Google Scholar 

  24. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6–7):485–496

    Article  CAS  Google Scholar 

  25. Novotny L, Hecht B (2012) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  PubMed  Google Scholar 

  27. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93(19):191113

    Article  Google Scholar 

  28. Beck FJ, Polman A, Catchpole KR (2009) Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys 105(11):114310

    Article  Google Scholar 

  29. Zhang Y, Stokes N, Jia B, Fan S, Gu M (2014) Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci Rep 4:4939

    CAS  PubMed  PubMed Central  Google Scholar 

  30. (a) Lee JH, Park JH, Kim JS, Lee DY, Cho K (2009) High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Org Electron 10(3):416–420; (b) Zhou F, Zhu J, Lai Z, Liu Y, Zhao X (2014) Surface plasmon resonances behavior in visible light of non-metal perovskite oxides AgNbO3. Appl Phys Lett 105(23): 231121

    Google Scholar 

Download references

Acknowledgements

Authors would like to greatly acknowledge Prof. V.K. Tripathi for his valuable guidance and inspiring discussions during the course of work reported in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, G., Sarswat, P.K. (2016). Interaction of Surface Plasmon Polaritons with Nanomaterials. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_5

Download citation

Publish with us

Policies and ethics