Skip to main content

Construction, Modeling, and Analysis of Transformation-Based Metamaterial Invisibility Cloaks

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

Abstract

A summary review of construction, modeling, and analysis of transformation-based metamaterial invisibility cloaks is presented. In particular, we present a simplified and unified theory of vector, tensor, and operator changes under coordinate transformations, and relate them specifically to electromagnetic field vectors, medium permittivity and permeability tensors, and the curl operator in Maxwell’s equations. The presented theory sets a basis for arbitrary manipulations of electromagnetic fields by coordinate transformations, known as the transformation electromagnetics or optics. We also present the examples of coordinate transformations which lead to construction of linear and nonlinear spherical metamaterial cloaks, as well as the resulting transformations of the permittivity/permeability tensors in both spherical and Cartesian systems. Similar principles are then used in construction of a cubical metamaterial cloak, where only Cartesian system is employed. The performance of all constructed spherical and cubical cloaks is verified by numerical simulations. Specifically, we perform full-wave rigorous modeling and analysis of the cloaking structures using a higher order finite element method for discretization of the cloaking region based on large continuously inhomogeneous anisotropic curved hexahedral finite elements with arbitrary material-representation orders and polynomial field expansions and a higher order method of moments for numerical termination of the computational domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alu A, Engheta N (2011) Optical metamaterials based on optical nanocircuits. Proc IEEE 99(10):1669–1681

    Article  Google Scholar 

  2. Engheta N, Ziolkowski RWE (2006) Metamaterials: physics and engineering explorations, 1st edn. Wiley-IEEE Press, New York, p 440

    Book  Google Scholar 

  3. Christophe C, Tatsuo I (2005) Electromagnetic metamaterials: transmission line theory and microwave applications, 1st edn. Wiley-IEEE Press, New York, p 376

    Google Scholar 

  4. Capolino F (2009) Metamaterials handbook, 1st edn. CRC Press, New York, p 1736

    Google Scholar 

  5. Cai W, Shalaev VM (2010) Optical metamaterials: fundamentals and applications, 1st edn. Springer, New York, p 212

    Book  Google Scholar 

  6. Pendry JB (2004) Negative refraction. Contemp Phys 45(3):191–202

    Article  CAS  Google Scholar 

  7. Scherer A, Painter O, Vuckovic J, Loncar M, Yoshie T (2002) Photonic crystals for confining, guiding, and emitting light. IEEE Trans Nanotechnol 1(1):4–11

    Article  Google Scholar 

  8. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312(5781):1780–1782

    Article  CAS  PubMed  Google Scholar 

  9. Schurig D, Pendry JB, Smith DR (2006) Calculation of material properties and ray tracing in transformation media. Opt Express 14(21):9794–9804

    Article  CAS  PubMed  Google Scholar 

  10. Cummer SA, Popa B-I, Schurig D, Smith DR, Pendry J (2006) Full-wave simulations of electromagnetic cloaking structures. Phys Rev E 74(3):036621

    Article  Google Scholar 

  11. Zolla F, Guenneau S, Nicolet A, Pendry JB (2007) Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect. Opt Lett 32(9):1069–1071

    Article  PubMed  Google Scholar 

  12. Ni Y, Gao L, Qiu C-W (2010) Achieving invisibility of homogeneous cylindrically anisotropic cylinders. Plasmonics 5(3):251–258

    Article  Google Scholar 

  13. Farhat M, Guenneau S, Movchan AB, Enoch S (2008) Achieving invisibility over a finite range of frequencies. Opt Express 16(8):5656–5661

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, Feng Y, Jiang T (2007) Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Opt Express 15(18):11133–11141

    Article  PubMed  Google Scholar 

  15. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–980

    Article  CAS  PubMed  Google Scholar 

  16. Yan M, Yan W, Qiu M (2009) Invisibility cloaking by coordinate Transformation. In: Emil W (ed) Progress in optics, vol 52. Elsevier, Amsterdam, pp 261–304

    Google Scholar 

  17. DoHoon K, Werner DH (2010) Transformation electromagnetics: an overview of the theory and applications. IEEE Antennas Propag Mag 52(1):24–46

    Article  Google Scholar 

  18. Maci S (2010) A cloaking metamaterial based on an inhomogeneous linear field transformation. IEEE Trans Antennas Propag 58(4):1136–1143

    Article  Google Scholar 

  19. Xie Y, Chen H, Xu Y, Zhu L, Ma H, Dong JW (2011) An invisibility cloak using silver nanowires. Plasmonics 6(3):477–481

    Article  CAS  Google Scholar 

  20. Chen H, Wu B-I, Zhang B, Kong JA (2007) Electromagnetic wave interactions with a metamaterial cloak. Phys Rev Lett 99(6):063903–4

    Article  PubMed  Google Scholar 

  21. Qiu C, Hu L, Zhang B, Wu B-I, Johnson SG, Joannopoulos JD (2009) Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings. Opt Express 17(16):13467–13478

    Article  CAS  PubMed  Google Scholar 

  22. Furlani EP, Baev A (2009) Optical nanotrapping using cloaking metamaterial. Phys Rev E 79(2):026607

    Article  Google Scholar 

  23. Alù A, Engheta N (2007) Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. Opt Express 15(6):3318–3332

    Article  PubMed  Google Scholar 

  24. Savić SV, Manić AB, Ilić MM, Notaroš BM (2013) Efficient higher order full-wave numerical analysis of 3-D cloaking structures. Plasmonics 8(2):455–463

    Article  Google Scholar 

  25. Ilić MM, Notaroš BM (2003) Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling. IEEE Trans Microw Theory Technol 51(3):1026–1033

    Article  Google Scholar 

  26. Djordjević M, Notaroš BM (2004) Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans Antennas Propag 52(8):2118–2129

    Article  Google Scholar 

  27. Ilić MM, Djordjević M, Ilić AŽ, Notaroš BM (2009) Higher order hybrid FEM-MOM technique for analysis of antennas and scatterers. IEEE Trans Antennas Propag 57(5):1452–1460

    Article  Google Scholar 

  28. Ilić MM, Ilić AŽ, Notaroš BM (2009) Continuously inhomogeneous higher order finite elements for 3-D electromagnetic analysis. IEEE Trans Antennas Propag 57(9):2798–2803

    Article  Google Scholar 

  29. Manić AB, Manić SB, Ilić MM, Notaroš BM (2012) Large anisotropic inhomogeneous higher order hierarchical generalized hexahedral finite elements for 3-D electromagnetic modeling of scattering and waveguide structures. Microw Opt Technol Lett 54(7):1644–1649

    Article  Google Scholar 

  30. Pendry J (2009) Taking the wraps off cloaking. Physics 2:95

    Article  Google Scholar 

  31. Ma H, Qu S, Xu Z, Wang J (2008) Approximation approach of designing practical cloaks with arbitrary shapes. Opt Express 16(20):15449–15454

    Article  PubMed  Google Scholar 

  32. You Y, Kattawar GW, Zhai P-W, Yang P (2008) Invisibility cloaks for irregular particles using coordinate transformations. Opt Express 16(9):6134–6145

    Article  PubMed  Google Scholar 

  33. Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB (2008) Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct Fundam Appl 6(1):87–95

    Article  Google Scholar 

  34. Savić SV, Notaroš BM, Ilić MM (2013) Conformal cubical 3D transformation-based metamaterial invisibility cloak. J Opt Soc Am A 30(1):7–12

    Google Scholar 

  35. Notaros BM (2010) Electromagnetics, 1st edn. Pearson Prentice Hall, Upper Saddle River, p 840

    Google Scholar 

  36. Tai C-T (1997) Generalized vector and dyadic analysis; applied mathematics in field theory, 2nd edn. Wiley-IEEE Press, New Jersey, p 208

    Book  Google Scholar 

  37. Post EJ (1962) Formal structure of electromagnetics; general covariance and electromagnetics. North-Holland Publishing Company, Netherlands, Amsterdam, p 204

    Google Scholar 

  38. Ward AJ, Pendry JB (1996) Refraction and geometry in Maxwell’s equations. J Mod Opt 43(4):773–793

    Article  Google Scholar 

  39. Milton GW, Briane M, Willis JR (2006) On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 8(10):1–20

    Article  Google Scholar 

  40. Notaroš BM (2008) Higher order frequency-domain computational electromagnetics. IEEE Trans Antennas Propag 56(8):2251–2276

    Article  Google Scholar 

  41. Wipl-D Pro, 11.0; WIPL-D d.o.o. (2013) http://www.wipld.com

  42. Guild MD, Haberman MR, Alù A (2011) Plasmonic cloaking and scattering cancelation for electromagnetic and acoustic waves. Wave Motion 48(6):468–482

    Article  Google Scholar 

  43. Zhang B, Chen H, Wu B-I (2008) Limitations of high-order transformation and incident angle on simplified invisibility cloaks. Opt Express 16(19):14655–14660

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under grants ECCS-1002385 and ECCS-1307863 and by the Serbian Ministry of Science and Technological Development under grant TR-32005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branislav M. Notaroš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Notaroš, B.M., Ilić, M.M., Savić, S.V., Manić, A.B. (2016). Construction, Modeling, and Analysis of Transformation-Based Metamaterial Invisibility Cloaks. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_4

Download citation

Publish with us

Policies and ethics