Skip to main content

Quantum Plasmonics: From Quantum Statistics to Quantum Interferences

  • Chapter
  • First Online:
  • 1717 Accesses

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

Abstract

Plasmons are characterized by losses into the metal, here we want to investigate the effect of these losses on their quantum properties. This is a field not yet fully investigated and the work presented here will give us the possibility to understand the effect of losses on the plasmons quantum properties. This will allow us to see how plasmons can be used in the quantum information technology field, since they keep the quantum information regardless of their lossy character. Another key property yet here investigated is the bosonic character of single surface plasmon polaritons (SPPs). The quasi-particle nature of SPPs, consisting of a photon (boson) coupled to a charge density wave of electrons (fermions), makes them an unusual type of quantum excitation. Here, we will show the bosonic character of plasmons, making use of interference experiments. We describe the first direct observation of quantum interference in the Hong-Ou and Mandel quantum interference effect for single SPPs, demonstrating by this way the bosonic nature of plasmons. This study opens opportunities for controlling quantum states of light in ultra-compact nanophotonic plasmonic circuitry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schawlow AL, Townes H (1958) Infrared and optical masers. Phys Rev 112:1940

    Article  CAS  Google Scholar 

  2. Brown LS, Gabrielse G (1986) Geonium theory: physics of a single electron or ion in a penning trap. Rev Mod Phys 58:233

    Article  CAS  Google Scholar 

  3. Chu S (1998) Nobel lecture: the manipulation of neutral particles. Rev Mod Phys 70:685

    Article  CAS  Google Scholar 

  4. Phillips WD (1998) Nobel lecture: laser cooling and trapping of neutral atoms. Rev Mod Phys 70:721

    Article  CAS  Google Scholar 

  5. Cohen-Tannoudji CN (1998) Nobel lecture: manipulating atoms with photons. Rev Mod Phys 70:707

    Article  CAS  Google Scholar 

  6. Wieman CE, Pritchard DE, Wineland DJ (1999) Atom cooling, trapping, and quantum manipulation. Rev Mod Phys 71:253

    Article  Google Scholar 

  7. Metcalf HJ, van der Straten P (2001) Laser cooling and trapping. Springer, Berlin

    Google Scholar 

  8. Ketterle W (2002) Nobel lecture: when atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev Mod Phys 74:1131

    Article  CAS  Google Scholar 

  9. Kastner MA (1992) The single-electron transistor. Rev Mod Phys 64:849

    Article  Google Scholar 

  10. Makhlin Y, Schon G, Shnirman A (2001) Quantum-state engineering with Josephson-junction devices. Rev Mod Phys 73:357

    Article  Google Scholar 

  11. Zeilinger A, Weihs G, Jennewien T, Aspelmeyer M (2005) Happy centenary, photon. Nature 433:230–238

    Article  CAS  PubMed  Google Scholar 

  12. Moore GE (1965) Cramming more components onto integrated circuits. Electronics, pp. 114–117

    Google Scholar 

  13. Benioff PA (1980) Mechanical Hamiltonian model of computers as represented by Turing machines. J Stat Phys 22:563–591

    Article  Google Scholar 

  14. Benioff PA (1982) Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: applications to Turing machines. Int J Theor Phys 21:177–201

    Article  Google Scholar 

  15. Benioff PA (1982) Quantum mechanical models of Turing machines that dissipate no energy. Phys Rev Lett 48:1581

    Article  Google Scholar 

  16. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467–488

    Article  Google Scholar 

  17. Deutsch D (1985) Quantum theory, the church-Turing principle and the universal quantum computer. Proc Roy Soc Lond A 400:97–117

    Article  Google Scholar 

  18. Di Vincenzo DP (1997) Topics in quantum computers. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  19. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photon 4:83–91

    Article  CAS  Google Scholar 

  20. Giannini V, Fernández-Domínguez AI, Sonnefraud Y, Roschuk T, Fernández-García R, Maier SA (2010) Controlling light localization and light–matter interactions with nanoplasmonics. Small 6:2498–2507

    Article  CAS  PubMed  Google Scholar 

  21. Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photon 3:388–394

    Article  CAS  Google Scholar 

  22. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  PubMed  Google Scholar 

  23. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  PubMed  Google Scholar 

  24. Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340

    Article  CAS  Google Scholar 

  25. Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450:402–406

    Article  CAS  PubMed  Google Scholar 

  26. de Demler AS, Lukin EA, Chang MD, Sorensen DE (2007) A single-photon transistor using nanoscale surface plasmons. Nat Phys 3:807–812

    Article  Google Scholar 

  27. de Leon NP, Lukin MD, Park H (2012) Quantum plasmonics circuits. IEEE Sel Top Quant Elec 18:1781–1789

    Article  Google Scholar 

  28. Altewischer E, van Exter MP, Woerdman JP (2002) Plasmon-assisted transmission of entangled photons. Nature 418:304–306

    Article  CAS  PubMed  Google Scholar 

  29. García-Vidal FJ, Erni D, Cirac JI, Martín-Moreno L, Moreno E (2004) Theory of Plasmon-assisted transmission of entangled photons. Phys Rev Lett 92:236801

    Article  PubMed  Google Scholar 

  30. Moreno F, Erni E, Gisin D, Zbinden N, Fasel H, Robin S (2005) Energy-time entanglement preservation in plasmon-assisted light transmission. Phys Rev Lett 94:110501

    Article  PubMed  Google Scholar 

  31. Gisin N, Zbinden H, Fasel S, Halder M (2006) Quantum superposition and entanglement of mesoscopic plasmons. New J Phys 8:13

    Article  Google Scholar 

  32. Lodahl P, Sørensen AS, Boltasseva A, Janousek J, Andersen UL, Huck A, Smolka S (2009) Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys Rev Lett 102:246802

    Article  PubMed  Google Scholar 

  33. Kolesov R, Grotz B, Balasubramanian G, Stoer RJ, Nicolet AAL, Hemmer PR, Jelezko F, Wrachtrup J (2009) Wave–particle duality of single surface plasmon polaritons. Nature 5:470

    CAS  Google Scholar 

  34. Heeres RW, Dorenbos SN, Koene B, Glenn GS, Kouwenhoven LP, Zwiller V (2010) On-chip single plasmon detection. Nano Lett 10:661

    Article  CAS  PubMed  Google Scholar 

  35. Falk AL, Koppens FHL, Yu CL, Kang K, Snapp N d L, Akimov AV, Jo M-H, Lukin MD, Park H (2009) Near-field electrical detection of optical plasmons and single plasmon sources. Nat Phys 5:475

    Article  CAS  Google Scholar 

  36. Di Martino G, Sonnefraud Y, Kena Cohen S, Tame M, Ozdemir SK, Kim MS, Maier SA (2012) Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nanoletters 12(5):2504–2508

    Article  CAS  Google Scholar 

  37. Hong CK, Ou ZY, Mandel L (1987) Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett 59:2044

    Article  CAS  PubMed  Google Scholar 

  38. Di Martino G, Sonnefraud Y, Tame MS, Kéna-Cohen S, Dieleman F, Özdemir ŞK, Kim MS, Maier SA (2014) Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect. Phys Rev Appl 1:034004

    Article  Google Scholar 

  39. Loudon R (2000) The quantum theory of light. Oxford University Press, Oxford

    Google Scholar 

  40. Thorn JJ, Neel MS, Donato VW, Bergreen GS, Davies RE, Beck M (2004) Observing the quantum behavior of light in an undergraduate laboratory. Am J Phys 72:1210

    Article  Google Scholar 

  41. Hockel D, Koch L, Benson O (2011) Direct measurement of heralded single-photon statistics from a parametric down-conversion source. Phys Rev A 83:013802

    Article  Google Scholar 

  42. Tame MS, Lee C, Lee J, Ballester D, Paternostro M, Zayats AV, Kim MS (2008) Single-photon excitation of surface plasmon polaritons. Phys Rev Lett 101:190504

    Article  CAS  PubMed  Google Scholar 

  43. Brongersma ML, Hartman JW, Atwater HH Plasmonics: electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit. (1999) Molecular Electronics. Symposium, Boston, 29 Nov–2 Dec)

    Google Scholar 

  44. Loudon R (1998) Fermion and boson beam-splitter statistics. Phys Rev A 58:4904

    Article  CAS  Google Scholar 

  45. Fujii G, Segawa T, Mori S, Namekata N, Fukuda D, Inoue S (2012) Preservation of photon indistinguishability after transmission through surface-plasmon-polariton waveguide. Opt Lett 37:1535

    Article  PubMed  Google Scholar 

  46. Heeres RW, Kouwenhoven LP, Zwiller V (2013) Quantum interference in plasmonic circuits. Nat Nanotechnol AOP 8:719–722

    Article  CAS  Google Scholar 

  47. Kim Y-S, Slattery O, Kuo PS, Tang X (2013) Two-photon interference with continuous-wave multi-mode coherent light, arXiv:1309.3017

    Google Scholar 

  48. Ballester D, Tame MS, Kim MS (2010) Quantum theory of surface-plasmon polariton scattering. Phys Rev A 82:012325

    Article  Google Scholar 

  49. Mandel L (1999) Quantum effects in one-photon and two-photon interference. Rev Mod Phys 71:274

    Article  Google Scholar 

  50. Ghosh R, Mandel L (1987) Observation of nonclassical effects in the interference of two photons. Phys Rev Lett 59:1903

    Article  CAS  PubMed  Google Scholar 

  51. Rarity JG, Tapster PR, Loudon R (2005) Non-classical interference between independent sources. J Opt B: Quantum Semiclassical Opt 7:S171

    Article  Google Scholar 

  52. Bocquillon E, Freulon V, Berroir JM, Degiovanni P, Plaçais B, Cavanna A, Jin Y, Fève G (2013) Coherence and indistinguishability of single electrons emitted by independent sources. Science 339:1054

    Article  CAS  PubMed  Google Scholar 

  53. Zia R, Selker MD, Brongersma ML (2005) Leaky and bound modes of surface plasmon waveguides. Phys Rev B 71:165431

    Article  Google Scholar 

  54. Lamprecht B et al (2001) Surface plasmon propagation in microscale metal stripes. Appl Phys Lett 79:51

    Article  CAS  Google Scholar 

  55. Weeber JC, Gonzalez MU, Baudrion AL, Dereux A (2005) Surface plasmon routing along right angle bent metal strips. Appl Phys Lett 87:221101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliana Di Martino PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Di Martino, G. (2016). Quantum Plasmonics: From Quantum Statistics to Quantum Interferences. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_12

Download citation

Publish with us

Policies and ethics