Skip to main content

Controlled Assembly of Plasmonic Nanostructures Templated by Porous Anodic Alumina Membranes

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

Abstract

Non-lithographic template-based approach, especially the porous anodic alumina (PAA) template, owing to its long-range ordering self-assembly hexagonal cells, facile controllability of various configuration shapes, excellent reproducibility, easy fabrication and modest cost, have attracted much attentions these days. Recent research interests of our group are based on this promising template. Several plasmonic nanostructures based on the PAA membranes were successfully fabricated, which were applied to surface-enhanced Raman scattering sensing, the process of tailoring fluorescence as well as surface-enhanced fluorescence cellular imaging. Our recent plasmonic research results based on the PAA membranes and their applications are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, Berlin

    Google Scholar 

  2. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  3. Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10(10):3427–3430

    Article  CAS  Google Scholar 

  4. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800

    Article  CAS  Google Scholar 

  5. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667

    Article  CAS  Google Scholar 

  6. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37(5):885–897

    Article  CAS  PubMed  Google Scholar 

  7. Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4(10):1576–1599

    Article  CAS  PubMed  Google Scholar 

  8. Fleischmann M, Hendra PJ, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  9. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84(1):1–20

    Article  CAS  Google Scholar 

  10. Schlegel VL, Cotton TM (1991) Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity. Anal Chem 63(3):241–247

    Article  CAS  PubMed  Google Scholar 

  11. Lee P, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  CAS  Google Scholar 

  12. Qiu T, Zhang W, Lang X, Zhou Y, Cui T, Chu PK (2009) Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. Small 5(20):2333–2337

    Article  CAS  PubMed  Google Scholar 

  13. Gunnarsson L, Bjerneld E, Xu H, Petronis S, Kasemo B, Käll M (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78(6):802–804

    Article  CAS  Google Scholar 

  14. Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107(30):7426–7433

    Article  CAS  Google Scholar 

  15. Tessier PM, Velev OD, Kalambur AT, Rabolt JF, Lenhoff AM, Kaler EW (2000) Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy. J Am Chem Soc 122(39):9554–9555

    Article  CAS  Google Scholar 

  16. Terekhov S, Mojzes P, Kachan S, Mukhurov N, Zhvavyi S, Panarin AY, Khodasevich I, Orlovich V, Thorel A, Grillon F (2011) A comparative study of surface-enhanced Raman scattering from silver-coated anodic aluminum oxide and porous silicon. J Raman Spectrosc 42(1):12–20

    Article  CAS  Google Scholar 

  17. Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL (2006) Highly raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv Mater 18(4):491–495

    Article  CAS  Google Scholar 

  18. Schierhorn M, Lee SJ, Boettcher SW, Stucky GD, Moskovits M (2006) Metal–silica hybrid nanostructures for surface-enhanced Raman spectroscopy. Adv Mater 18(21):2829–2832

    Article  CAS  Google Scholar 

  19. Lombardi I, Cavallotti P, Carraro C, Maboudian R (2007) Template assisted deposition of Ag nanoparticle arrays for surface-enhanced Raman scattering applications. Sens Actuators B 125(2):353–356

    Article  CAS  Google Scholar 

  20. Choi D, Choi Y, Hong S, Kang T, Lee LP (2010) Self-organized hexagonal-nanopore SERS array. Small 6(16):1741–1744

    Article  CAS  PubMed  Google Scholar 

  21. Lee SJ, Morrill AR, Moskovits M (2006) Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc 128(7):2200–2201

    Article  CAS  PubMed  Google Scholar 

  22. Lee SJ, Guan Z, Xu H, Moskovits M (2007) Surface-enhanced Raman spectroscopy and nanogeometry: the plasmonic origin of SERS. J Phys Chem C 111(49):17985–17988

    Article  CAS  Google Scholar 

  23. Keller F, Hunter M, Robinson D (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100(9):411–419

    Article  CAS  Google Scholar 

  24. Jessensky O, Müller F, Gösele U (1998) Self-organized formation of hexagonal pore arrays in anodic alumina. Appl Phys Lett 72(10):1173–1175

    Article  CAS  Google Scholar 

  25. Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71(19):2770–2772

    Article  CAS  Google Scholar 

  26. Masuda H, Satoh M (1996) Synthesis of highly ordered porous alumina membranes using electrochemical techniques. Jpn J Appl Phys Part 2 35:L126–L128

    Article  CAS  Google Scholar 

  27. Asoh H, Nishio K, Nakao M, Tamamura T, Masuda H (2001) Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J Electrochem Soc 148(4):B152–B156

    Article  CAS  Google Scholar 

  28. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468

    Article  CAS  PubMed  Google Scholar 

  29. Li A, Müller F, Birner A, Nielsch K, Gösele U (1998) Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J Appl Phys 84(11):6023–6026

    Article  CAS  Google Scholar 

  30. Lang X, Qiu T, Zhang W, Yin Y, Chu PK (2011) Tunable silver nanocap superlattice arrays for surface-enhanced Raman scattering. J Phys Chem C 115(49):24328–24333

    Article  CAS  Google Scholar 

  31. Lang X, Qiu T, Yin Y, Kong F, Si L, Hao Q, Chu PK (2012) Silver nanovoid arrays for surface-enhanced Raman scattering. Langmuir 28(23):8799–8803

    Article  CAS  PubMed  Google Scholar 

  32. Lang X, Qiu T, Long K, Han D, Nan H, Chu PK (2013) Direct imprint of nanostructures in metals using porous anodic alumina stamps. Nanotechnology 24(25):255303

    Article  PubMed  Google Scholar 

  33. Yao J, Pan G, Xue K, Wu D, Ren B, Sun D, Tang J, Xu X, Tian Z (2000) A complementary study of surface-enhanced Raman scattering and metal nanorod arrays. Pure Appl Chem 72(1–2):221–228

    CAS  Google Scholar 

  34. Yao J-L, Tang J, Wu D-Y, Sun D-M, Xue K-H, Ren B, Mao B-W, Tian Z-Q (2002) Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration. Surf Sci 514(1):108–116

    Article  CAS  Google Scholar 

  35. Ko H, Tsukruk VV (2008) Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering. Small 4(11):1980–1984

    Article  CAS  PubMed  Google Scholar 

  36. Sen T, Sadhu S, Patra A (2007) Surface energy transfer from rhodamine 6G to gold nanoparticles: a spectroscopic ruler. Appl Phys Lett 91(4):043104

    Article  Google Scholar 

  37. Qiu T, Jiang J, Zhang W, Lang X, Yu X, Chu PK (2010) High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays. ACS Appl Mater Interfaces 2(8):2465–2470

    Article  CAS  PubMed  Google Scholar 

  38. Chou SY, Krauss PR, Zhang W, Guo L, Zhuang L (1997) Sub-10 nm imprint lithography and applications. J Vac Sci Technol B 15(6):2897–2904

    Article  CAS  Google Scholar 

  39. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105(4):1171–1196

    Article  CAS  PubMed  Google Scholar 

  40. Kim C, Burrows PE, Forrest SR (2000) Micropatterning of organic electronic devices by cold-welding. Science 288(5467):831–833

    Article  CAS  PubMed  Google Scholar 

  41. Yu J, Bulović V (2007) Micropatterning metal electrode of organic light emitting devices using rapid polydimethylsiloxane lift-off. Appl Phys Lett 91(4):043102

    Article  Google Scholar 

  42. Buzzi S, Robin F, Callegari V, Löffler J (2008) Metal direct nanoimprinting for photonics. Microelectron Eng 85(2):419–424

    Article  CAS  Google Scholar 

  43. Chuang S, Chen H, Kuo S, Lai Y, Lee C (2008) Using direct nanoimprinting to study extraordinary transmission in textured metal films. Opt Express 16(4):2415–2422

    Article  CAS  PubMed  Google Scholar 

  44. Cui B, Keimel C, Chou SY (2009) Ultrafast direct imprinting of nanostructures in metals by pulsed laser melting. Nanotechnology 21(4):19–63

    Google Scholar 

  45. Hsu KH, Schultz PL, Ferreira PM, Fang NX (2007) Electrochemical nanoimprinting with solid-state superionic stamps. Nano Lett 7(2):446–451

    Article  CAS  PubMed  Google Scholar 

  46. Kumar A, Hsu KH, Jacobs KE, Ferreira PM, Fang NX (2011) Direct metal nano-imprinting using an embossed solid electrolyte stamp. Nanotechnology 22(15):155302

    Google Scholar 

  47. Jiang J, Mei F, Meng WJ, Sinclair GB, Park S (2008) Direct microscale imprinting of Al at room temperature with Si inserts. Microsyst Technol 14(6):815–819

    Article  CAS  Google Scholar 

  48. Lang X, Li DJ, Luo X, Zhang Y, Yin Y, Qiu T (2014) Tunable surface-enhanced Raman scattering from high-density gold semishell arrays with controllable dimensions. Chemphyschem 15(2):337–343

    Article  CAS  PubMed  Google Scholar 

  49. Hirai Y, Ushiro T, Kanakugi T, Matsuura T (2003) Fine gold grating fabrication on glass plate by imprint lithography. Nanofabrication Technol 5220:74–81

    Article  CAS  Google Scholar 

  50. Long K, Luo X, Nan H, Du D, Zhao W, Ni Z, Qiu T (2013) Surface-enhanced Raman scattering from graphene covered gold nanocap arrays. J Appl Phys 114(18):183520, 183525

    Article  Google Scholar 

  51. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783

    Article  CAS  Google Scholar 

  52. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  PubMed  Google Scholar 

  53. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49(1):569–638

    Article  CAS  PubMed  Google Scholar 

  54. Kubo S, Gu Z-Z, Tryk DA, Ohko Y, Sato O, Fujishima A (2002) Metal-coated colloidal crystal film as surface-enhanced Raman scattering substrate. Langmuir 18(13):5043–5046

    Article  CAS  Google Scholar 

  55. Kuncicky DM, Prevo BG, Velev OD (2006) Controlled assembly of SERS substrates templated by colloidal crystal films. J Mater Chem 16(13):1207–1211

    Article  CAS  Google Scholar 

  56. Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8(7):1923–1928

    Article  CAS  PubMed  Google Scholar 

  57. Oubre C, Nordlander P (2005) Finite-difference time-domain studies of the optical properties of nanoshell dimers. J Phys Chem B 109(20):10042–10051

    Article  CAS  PubMed  Google Scholar 

  58. Lang X, Qiu T, Zhang W, Ji C, Wang J, Chu PK (2010) Trace detection of multiwalled carbon nanotubes using Raman-enhancing silver nanocap arrays. J Phys D Appl Phys 43(45):455302

    Article  Google Scholar 

  59. Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75(3):1139–1152

    Article  CAS  Google Scholar 

  60. Ruppin R (1982) Decay of an excited molecule near a small metal sphere. J Chem Phys 76(4):1681–1684

    Article  CAS  Google Scholar 

  61. Qiu T, Kong F, Yu X, Zhang W, Lang X, Chu PK (2009) Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays. Appl Phys Lett 95(21):213104

    Article  Google Scholar 

  62. Kim MS, Park DH, Cho EH, Kim KH, Park Q-H, Song H, Kim D-C, Kim J, Joo J (2009) Complex nanoparticle of light-emitting MEH-PPV with Au: enhanced luminescence. ACS Nano 3(6):1329–1334

    Article  CAS  PubMed  Google Scholar 

  63. Kong F, Zhang X, Lang X, Lin B, Yang Y, Qiu T (2011) Band-gap-dependent emissions from conjugated polymers coupled silver nanocap array. Appl Phys Lett 99(23):233112

    Article  Google Scholar 

  64. Bhattacharyya S, Sen T, Patra A (2010) Host−guest energy transfer: semiconducting polymer nanoparticles and Au nanoparticles. J Phys Chem C 114(27):11787–11795

    Article  CAS  Google Scholar 

  65. Andrew P, Barnes W (2004) Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306(5698):1002–1005

    Article  CAS  PubMed  Google Scholar 

  66. Kovar JL, Simpson MA, Schutz-Geschwender A, Olive DM (2007) A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models. Anal Biochem 367(1):1–12

    Article  CAS  PubMed  Google Scholar 

  67. Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943

    Article  PubMed  Google Scholar 

  68. Nagano T, Yoshimura T (2002) Bioimaging of nitric oxide. Chem Rev 102(4):1235–1270

    Article  CAS  PubMed  Google Scholar 

  69. Knemeyer J-P, Herten D-P, Sauer M (2003) Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy. Anal Chem 75(9):2147–2153

    Article  CAS  PubMed  Google Scholar 

  70. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    Article  CAS  PubMed  Google Scholar 

  71. Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, McBride J, Wang Y, DeFelice LJ, Blakely RD (2002) Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 124(17):4586–4594

    Article  CAS  PubMed  Google Scholar 

  72. Chumanov G, Sokolov K, Gregory BW, Cotton TM (1995) Colloidal metal films as a substrate for surface-enhanced spectroscopy. J Phys Chem 99(23):9466–9471

    Article  CAS  Google Scholar 

  73. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70(18):3898–3905

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Matveeva E, Gryczynski I, Leonenko Z, Lakowicz JR (2005) Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition. J Phys Chem B 109(16):7969–7975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mertens H, Koenderink A, Polman A (2007) Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. Phys Rev B 76(11):115123

    Article  Google Scholar 

  76. Alberts B, Johnson A, Walter P, Lewis J, Raff M, Roberts K (2008) Molecular cell biology, 4th edn. Garland Science, New York/London

    Google Scholar 

  77. Hao Q, Yang F, Yin Y, Si L, Long K, Xiao Z, Qiu T, Chu PK (2013) Tunable fluorescence from patterned silver nano-island arrays for sensitive sub-cell imaging. J Phys D Appl Phys 46(49):495302

    Article  Google Scholar 

  78. Chen A, Moy VT (2000) Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophys J 78(6):2814–2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Akbay N, Lakowicz JR, Ray K (2012) Distance-dependent intrinsic fluorescence of proteins on aluminum nanostructures. Proc SPIE Plasmon Biol Med IX, 8234:823417

    Google Scholar 

  80. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors 12(2):1657–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was jointly supported by the National Natural Science Foundation of China under Grant No. 51271057 and the Natural Science Foundation of Jiangsu Province, China, under Grant No. BK2012757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fan, X., Hao, Q., Qiu, T. (2016). Controlled Assembly of Plasmonic Nanostructures Templated by Porous Anodic Alumina Membranes. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_10

Download citation

Publish with us

Policies and ethics