Advertisement

An Overview of Retinal Blood Vessels Segmentation

  • Fatimatufaridah Jusoh
  • Habibollah Haron
  • Roliana Ibrahim
  • Mohd Zulfaezal Che Azemin
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 362)

Abstract

In the recent past, the application of image processing in the fields of medicine and ophthalmology was widely used. Retina blood vessels are the only part of the human body that can be directly visualized non-invasively in vivo. Retina segmentation is important to help ophthalmologists detect various eyes diseases such as diabetic retinopathy, glaucoma, and age macular degeneration. Consequently, vessel segmentation is an important step in image analysis used to assess retinal abnormality. Vessel segmentation must be completed accurately to obtain good results for further image analysis. This paper reviews the algorithms used in previous studies on retinal vessel segmentation and discusses the problems associated with retina analysis.

Keywords

Unsupervised Method Vessel Segmentation Retinal Blood Vessel Bifurcation Angle Vessel Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This material is based upon work supported by Fundamental Research Grant Scheme (FRGS), under Vote No. R.J130000.7828.4F537 and Ministry of Higher Education (MOHE). Any opinions, findings, and conclusions or recommendations expressed in this material are those from the authors and do not necessarily reflect the views of the Universiti Teknologi Malaysia.

References

  1. 1.
    Ganguly, D., Chakraborty, S., Balitanas, M., Tai-hoon, K.: Medical imaging: a review. Security-enriched urban computing and smart grid. Commun. Comput. Inf. Sci. 78, 504–516 (2010)CrossRefGoogle Scholar
  2. 2.
    Deserno, T. M.: Fundamentals of Biomedical Image Processing. Biomedical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin (2011)Google Scholar
  3. 3.
    Iftimia, N., Hammer, D.X., Brugge, W.R.: Introduction To Optical Imaging In Clinical Medicine. John Wiley & Sons, Inc., Hoboken (2011)Google Scholar
  4. 4.
    Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal Imaging and image analysis. IEEE Trans. Med. Imaging. 3:169–208 (2010)Google Scholar
  5. 5.
    Herbert, F.J., Michael, J.C.: Automated Image Detection of Retinal Pathology. Taylor and Francis Group, United States (2010)Google Scholar
  6. 6.
    Hooshyar, S., Khayati, R.: Retina vessel detection using fuzzy ant colony algorithm. In: Canadian Conference Computer and Robot Vision. IEEE (2010)Google Scholar
  7. 7.
    Patton, N., Aslam, T.M., MacGillivray, T., Deary, I.J., Dhillon, B., Eikelboom, R.H., Yogesan, K., Constable, I.J.: Retinal image analysis: Concepts, applications and potential. Prog. Retinal Eye Res. 25(1), 99–127 (2006)CrossRefGoogle Scholar
  8. 8.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images—a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)CrossRefGoogle Scholar
  9. 9.
    Bhuiyan, A., Nath, B., Chua, J., Ramamohanarao, K.: Automatic detection of vascular bifurcations and crossovers from color retinal fundus images. In: Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 711–718 (2007)Google Scholar
  10. 10.
    Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 7(3), e32435 (2012)CrossRefGoogle Scholar
  11. 11.
    Jegatha, R., Lakshmi, K.: Retinal blood vessel segmentation using gray-level and moment invariants-based features. J. Comput. Appl. 5(EICA2012-3):271 (2012)Google Scholar
  12. 12.
    Che Azemin, M.Z., Kumar, D.K.: Estimating retinal vessel diameter change from the vessel cross-section. In: IFMBE Proceedings 5th Kuala Lumpur International Conference on Biomedical Engineering, vol. 35, pp. 655–658 (2011)Google Scholar
  13. 13.
    Garhöfer, G., Vilser, W.: Measurement of Retinal Vessel Diameters. Ocular Blood Flow, pp. 101–122. Springer, Berlin (2012)CrossRefGoogle Scholar
  14. 14.
    Lupaşcu, C.A., Tegolo, D.: Automatic unsupervised segmentation of retinal vessels using self-organizing maps and k-means clustering. Computational intelligence methods for bioinformatics and biostatistics. Lecture Notes in Computer Science, vol. 6685, pp. 263–274 (2011)Google Scholar
  15. 15.
    Asad, A.H., Azar, A.T., Hassaanien, A.E.: Ant colony-based system for retinal blood vessels segmentation. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Advances in Intelligent Systems and Computing, vol. 201, pp. 441–452 (2013)Google Scholar
  16. 16.
    Honale, S.S., Kapse, V.S.: A review of methods for blood vessel segmentation in retinal images. Int. J. Eng. Res. Technol. (IJERT). 1(10):1 (2012)Google Scholar
  17. 17.
    Raja, J.B., Ravichandran, C.G.: blood vessel segmentation for high resolution retinal images. IJCSI Int. J. Comput. Sci. Issues. 8(6):2 (2011)Google Scholar
  18. 18.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Ginneken, B.V.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)CrossRefGoogle Scholar
  19. 19.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piece-wise threhsold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)CrossRefGoogle Scholar
  20. 20.
    MESSIDOR: Methods for Evaluating Segmentation and Indexing techniques Dedicated to Retinal Ophthalmology. http://messidor.crihan.fr/index-en.php (2004)
  21. 21.
    Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)CrossRefGoogle Scholar
  22. 22.
    Ardizzone, E., Pirrone, R., Gambino, O., Radosta, S.: Blood vessels and feature points detection on retinal images. In: 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, pp. 2246–2249 (2008)Google Scholar
  23. 23.
    Malek, J., Tourki, R.: Blood vessels extraction and classification into arteries and veins in retinal images. In: 10th International Multi-Conference on Systems, Signals and Devices (SSD) Hammamet, Tunisia (2013)Google Scholar
  24. 24.
    Chanwimaluang, T., Fan, G.: An efficient algorithm for extraction of anatomical structures in retinal images. In Proceedings ICIP, pp. 1193–1196 (2003)Google Scholar
  25. 25.
    Li, H., Zhang, J., Nie, Q., Cheng, L.: A retinal vessel tracking method based on bayesian theory. In: 8th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 232–235 (2013)Google Scholar
  26. 26.
    Kee, Y.P., Lila Iznita, I., Ahmad Fadzil, M.H., Hanung, A.N., Hermawan, N., Vijanth, S.A.: Segmentation of retinal vasculature in colour fundus images. In: Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA 2009). Monash University, Sunway campus, Malaysia (2009)Google Scholar
  27. 27.
    Manoj, S., Muralidharan S.P.M.: Neural network based classifier for retinal blood vessel segmentation. Int. J. Recent Trends Electr Electron Eng. 3:44 (2013)Google Scholar
  28. 28.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A., Owen, C.G., Barman, V.: Retinal vessel segmentation using ensemble classifier of bagged decision trees. In: IET Conference on Image Processing (IPR 2012), pp. 1–6 (2012)Google Scholar
  29. 29.
    Yin, Y., Adel, M., Bourennane, S.: An automatic tracking method for retinal vascular tree extraction. In: Acoustics, IEEE International Conference on Speech and Signal Processing (ICASSP), pp. 709–712 (2012)Google Scholar
  30. 30.
    Franklin, S.W., Rajan, S.E.: Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images. Biocybernetics Biomed. Eng. 34(2), 117–124 (2014)CrossRefGoogle Scholar
  31. 31.
    Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., Angelopoulou, E.: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process. 7(4):373–383 (2013)Google Scholar
  32. 32.
    Wang, Y.F., Ji, G., Lin, P., Trucco, E.: Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recogn. 46, 2117–2133 (2013)CrossRefGoogle Scholar
  33. 33.
    Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34, 213–227 (2010)CrossRefGoogle Scholar
  34. 34.
    Akram, M.U., Atzaz, A., Aneeque, S.F., Khan, S.A.: Blood vessel enhancement and segmentation using wavelet transform. In: International Conference on Digital Image Processing, pp. 34–38 (2009)Google Scholar
  35. 35.
    Tramontan, L., Ruggeri, A.: Automatic refinement of vascular tracking in retinal images: false vessels detection. In: 25th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fatimatufaridah Jusoh
    • 1
  • Habibollah Haron
    • 1
  • Roliana Ibrahim
    • 1
  • Mohd Zulfaezal Che Azemin
    • 2
  1. 1.Faculty of ComputingUniversity of Technology MalaysiaSkudaiMalaysia
  2. 2.Kulliyyah of Allied Health SciencesInternational Islamic University MalaysiaKuantanMalaysia

Personalised recommendations