Skip to main content

System Level Modeling for Tunable Components

  • Chapter
  • First Online:
  • 899 Accesses

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 17))

Abstract

As shown in the previous chapter, the response over the complete frequency range presents different amplitude values derived from the variation in the impedance matching at discrete frequencies. Ideally, a wide impedance matching in the considered frequency range is desired to hold a certain quality of signal at all operation bands. However, fundamental limitations indicate that in order to obtain a perfect impedance matching, a reduction of the available bandwidth is present at a certain frequency. As a result, the matching requires to be adapted by finding a compromise considering the minimum tolerance on the magnitude of the input reflection over the prescribed frequency (Bode, Network analysis and feedback amplifier design, D. Van Nostrand Company, New York, 1945, Fano, Theoretical limitations on the broadband matching of arbitrary impedances. Technical report, Massachusetts Institute of Technology, Research Laboratory of Electronics, 1948). As shown in Fig. 4.1 this improvement can be realized by employing tunable components to dynamically cover a frequency range, to reduce the noise of diverse sources of distortion and to improve the impedance matching at an operation frequency considering a narrowband signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The effect of a frequency response is considered dispersive when the frequency and the phase are not linearly connected, e.g. by the phase velocity of the wave \(v=\frac{\omega }{k}=\frac{1}{\sqrt{\mu \varepsilon }}\) [11].

  2. 2.

    Up to five carriers with a bandwidth of up to \({20} \, \mathrm{MHz}\) each can be aggregated in LTE-Advanced. Furthermore, data rates of the order of \({1} \, \mathrm{Gbps}\) might theoretically be achieved using contiguous bandwidths of \({40} \, \mathrm{MHz}\) or more [29].

References

  1. H.W. Bode, Network Analysis and Feedback Amplifier Design (D. Van Nostrand Company, New York, 1945)

    Google Scholar 

  2. R.M. Fano, Theoretical limitations on the broadband matching of arbitrary impedances. Technical report, Massachusetts Institute of Technology, Research Laboratory of Electronics (1948)

    Google Scholar 

  3. M. Pelosi, O. Franek, M. Knudsen, G. Pedersen, J. Andersen, Antenna proximity effects for talk and data modes in mobile phones. IEEE Antennas Propag. Mag. 52, 15–27 (2010)

    Article  Google Scholar 

  4. W. Yu, S. Yang, C.-L. Tang, D. Tu, Accurate simulation of the radiation performance of a mobile slide phone in a hand-head position. IEEE Antennas Propag. Mag. 52, 168–177 (2010)

    Article  Google Scholar 

  5. A. Azizzadeh, L. Mohammadi, Degradation of ber by group delay in digital phase modulation, in Proceedings of Advanced International Conference on Telecommunications, Washington (2008), pp. 350–354

    Google Scholar 

  6. P. Scragg, Digital microwave radio signatures for 16qam modem testing, in Proceedings of South African Conference on Communications and Signal Processing (1989), pp. 49–51

    Google Scholar 

  7. D. Scherer, Measurement tools for digital video transmission. IEEE Trans. Broadcast. 39, 350–363 (1993)

    Article  Google Scholar 

  8. P. Martel, G. Lossois, C. Danchesi, D. Brunei, L. Noel, Experimental investigations on ber degradations due to analogue channel filtering in zero-if receivers for fdd wcdma. Electron. Lett. 44, 138–139 (2008)

    Article  Google Scholar 

  9. A. Georgiadis, Gain, phase imbalance, and phase noise effects on error vector magnitude. IEEE Trans. Veh. Technol. 53, 443–449 (2004)

    Article  Google Scholar 

  10. T. Jensen, T. Larsen, Robust computation of error vector magnitude for wireless standards. IEEE Trans. Commun. 61, 648–657 (2013)

    Article  Google Scholar 

  11. J.D. Jackson, Classical Electrodynamics (Wiley, Hoboken, 1999)

    MATH  Google Scholar 

  12. T.S. Rappaport, Wireless Communications Principles and Practice (Prentice Hall PTR, New Jersey, 2002)

    MATH  Google Scholar 

  13. J.G. Proakis, Digital Communications (McGraw-Hill, Boston, 2001)

    MATH  Google Scholar 

  14. N. Lay, M. Dillon, E. Satorius, J. Mulligan, A communications system testbed, in 1996 Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computers, vol. 1 (1996), pp. 663–667

    Google Scholar 

  15. B. Shishkin, D. Pfeil, D. Nguyen, K. Wanuga, J. Chacko, J. Johnson, N. Kandasamy, T. Kurzweg, K. Dandekar, SDC Testbed: Software Defined Communications Testbed for Wireless Radio and Optical Networking (2011), pp. 300–306

    Google Scholar 

  16. D. Adasiak, M. Grela, D. Rosolowski, Flexible offline testbed for verification of new rf techniques and concepts, in Proceedings of 17th International Conference on Microwaves, Radar and Wireless Communications (2008), pp. 1–4

    Google Scholar 

  17. R. Morawski, T. Le-Ngoc, O. Naeem, Wireless and Wireline Mimo Testbed (2003)

    Google Scholar 

  18. R. Rao, W. Zhu, S. Lang, C. Oberli, D. Browne, J. Bhatia, J.-F. Frigon, J. Wang, P. Gupta, H. Lee, D. Liu, S. Wong, M. Fitz, B. Daneshrad, O. Takeshita, Multi-antenna testbeds for research and education in wireless communications. IEEE Commun. Ma 42, 72–81 (2004)

    Article  Google Scholar 

  19. R. Freeman, Radio System Design for Telecommunication (Wiley, New Jersey, 2007)

    Book  Google Scholar 

  20. Y. Zheng, H. Maune, A. Giere, M. Sazegar, R. Jakoby, Constraints on efficient control of tunable impedance matching network based on barium-strontium-titanate thick-film varactors, in 38th European Microwave Conference, EuMC (2008)

    Google Scholar 

  21. H. Maune, S.M.Y. Zheng, X. Zhou, A. Giere, P. Scheele, F. Paul, J. Binder, R. Jakoby, Nonlinear ceramics for tunable microwave devices part ii: Rf-characterization and component desig. Microsyst. Technol. 17(2), 213–224 (2011)

    Article  Google Scholar 

  22. Y. Zheng, Tunable Multiband Ferroelectric Devices for Reconfigurable RF-Frontends (Springer, New York, 2013)

    Book  Google Scholar 

  23. P. Scheele, A. Giere, Y. Zheng, F. Goelden, R. Jakoby, Modeling and applications of ferroelectric-thick film devices with resistive electrodes for linearity improvement and tuning-voltage reduction. IEEE Trans. Microw. Theory Tech. 55, 383–390 (2007)

    Article  Google Scholar 

  24. Matching circuit optimization for antenna application. Technical report, CST AG (2012)

    Google Scholar 

  25. Bluetooth antenna design. Technical report, Texas Instruments (2013)

    Google Scholar 

  26. P. Mathiopoulos, H. Ohnishi, K. Feher, Study of 1024-qam system performance in the presence of filtering imperfections. IEE Proc. I Commun. Speech Vis. 136, 175–179 (1989)

    Google Scholar 

  27. E.D. Sunde, Pulse transmission by am, fm, and pm in the presence of phase distortion. Bell Syst. Tech. J. 40, 353–422 (1961)

    Article  Google Scholar 

  28. H. Bogucka, K. Wesolowski, Frequency-domain echo cancellation in digital multicarrier modulation systems. IEEE Trans. Commun. 48, 333–342 (2000)

    Article  Google Scholar 

  29. S. Sesia, M. Baker, I. Toufik, LTE–The UMTS Long Term Evolution: From Theory to Practice, 2nd edn. (Wiley, Chichester, 2011)

    Book  Google Scholar 

  30. H. Holma, A. Toskala, WCDMA for UMTS: Radio Access for Third Generation Mobile Communications (Wiley, New York, 2002)

    Book  Google Scholar 

  31. J. Heiskala, J. Terry, OFDM Wireless LANs: A Theoretical and Practical Guide (SAMS, Indianapolis, 2001)

    Google Scholar 

  32. H. Arslan, H. Mahmoud, Error vector magnitude to snr conversion for nondata-aided receivers. IEEE Trans. Wirel. Commun. 8, 2694–2704 (2009)

    Article  Google Scholar 

  33. H. Yap, Designing To Digital Wireless Specifications Using Circuit Envelope Simulation, vol.1 (1997), pp. 173–176

    Google Scholar 

  34. R. Hassun, M. Flaherty, R. Matreci, M. Taylor, Effective Evaluation of Link Quality Using Error Vector Magnitude Techniques (1997), pp. 89–94

    Google Scholar 

  35. 3GPP ts 25.141.v5.15.0 technical specification group radio access network; base station (BS) conformance testing (FDD) (2009)

    Google Scholar 

  36. 3GPP ts 36.101.v8.8.0 technical specification group radio access network evolved universal terrestrial radio access; evolved universal terrestrial radio access (E-UTRA); user equipment (UE) radio transmission and reception (2009)

    Google Scholar 

  37. 3GPP ts 36.141.v10.1.0 lte; evolved universal terrestrial radio access (E-UTRA); base station (BS) conformance testing (3gpp ts 36.141 version 10.1.0 release 10) (2011)

    Google Scholar 

  38. 3GPP TR 25.814 v7.1.0 technical specification group radio access network; physical layer aspects for evolved universal terrestrial radio access (UTRA) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Gonzalez Rodriguez .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonzalez Rodriguez, E. (2016). System Level Modeling for Tunable Components. In: Reconfigurable Transceiver Architecture for Multiband RF-Frontends. Smart Sensors, Measurement and Instrumentation, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-24581-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24581-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24579-9

  • Online ISBN: 978-3-319-24581-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics