Advertisement

Application of Symmetry Properties to Spectral Signature Barcodes

  • Jordi NaquiEmail author
Chapter
  • 604 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The symmetry properties of transmission lines loaded with single (per-unit-cell) symmetric resonators described in Chap.  4 may be used not only as a sensing mechanism (Chap.  6), but also as an encoding mechanism. In this chapter, preliminary results applying such symmetry properties for the synthesis of chipless tags for radio-frequency identification (RFID) are shown.

Keywords

Transmission Line Ground Plane Microstrip Line Coplanar Waveguide Encode Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Preradovic, N. Karmakar, Chipless RFID: bar code of the future. IEEE Microw. Mag. 11(7), 87–97 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Preradovic, N.C. Karmakar, Multiresonator-based Chipless RFID: Barcode of the Future. (Springer Science & Business Media, New York, 2012)Google Scholar
  3. 3.
    S. Preradovic, I. Balbin, N. Karmakar, G. Swiegers, A novel chipless RFID system based on planar multiresonators for barcode replacement, in IEEE International Conference on RFID, (Las Vegas, NV, USA, 2008) pp. 289–296Google Scholar
  4. 4.
    S. Preradovic, I. Balbin, S. Roy, N. Karmakar, G. Sweigers, Radio frequency transponder, in Australian Provisional Patent Application (Ref: P30228AUP1), pp. 79–82 (2008)Google Scholar
  5. 5.
    S. Preradovic, Chipless RFID system for barcode replacement. Ph.D. dissertation, Monash University, 2009Google Scholar
  6. 6.
    R. Koswatta, N. Karmakar, A novel reader architecture based on UWB chirp signal interrogation for multiresonator-based chipless RFID tag reading. IEEE Trans. Microw. Theory Tech. 60(9), 2925–2933 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Weng, S. Cheung, T. Yuk, L. Liu, Design of chipless UWB RFID system using a CPW multi-resonator. IEEE Antennas Propag. Mag. 55(1), 13–31 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Preradovic, I. Balbin, N. Karmakar, G. Swiegers, Multiresonator-based chipless RFID system for low-cost item tracking. IEEE Trans. Microw. Theory Tech. 57(5), 1411–1419 (2009)CrossRefGoogle Scholar
  9. 9.
    L. Yang, A. Rida, R. Vyas, M. Tentzeris, RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Tech. 55(12), 2894–2901 (2007)CrossRefGoogle Scholar
  10. 10.
    L. Zheng, S. Rodríguez, L. Zhang, B. Shao, L.-R. Zheng, Design and implementation of a fully reconfigurable chipless RFID tag using inkjet printing technology, in IEEE International Symposium on Circuits System (ISCAS), (Seattle, WA, USA, 2008), pp. 1524–1527Google Scholar
  11. 11.
    S. Preradovic, N. Karmakar, Design of chipless RFID tag for operation on flexible laminates. IEEE Antennas Wireless Propag. Lett. 9, 207–210 (2010)CrossRefGoogle Scholar
  12. 12.
    B. Nikfal, C. Caloz, Hybrid time-frequency RFID system, in IEEE MTT-S International Microwave Symposium Digest, (Montreal, Canada, 2012)Google Scholar
  13. 13.
    N.C. Karmakar, R. Koswatta, P. Kalansuriya, E. Rubayet et al., Chipless RFID Reader Architecture. (Artech House, Boston, 2013)Google Scholar
  14. 14.
    C. Mandel, B. Kubina, M. Schüßler, R. Jakoby, Metamaterial-inspired passive chipless radio-frequency identification and wireless sensing. Annals of Telecommunications-annales des télécommunications 68(7-8), 385–399, (2013)Google Scholar
  15. 15.
    D. Girbau, A. Lázaro, R. Villarino, Passive chipless wireless sensor for two-dimensional displacement measurement, in European Microwave Conference (EuMC), (Manchester, UK, 2011), pp. 79–82Google Scholar
  16. 16.
    D. Girbau, A. Lázaro, R. Villarino, Passive wireless permittivity sensor based on frequency-coded chipless RFID tags, in IEEE MTT-S International Microwave Symposium on Digest, (Montreal, Canada, 2012)Google Scholar
  17. 17.
    J. Lorenzo, D. Girbau, A. Lázaro, R. Villarino, Temperature sensor based on frequency-coded chipless RFID tags. Microw. Opt. Technol. Lett. 56(10), 2411–2415 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Girbau, J. Lorenzo, A. Lázaro, C. Ferrater, R. Villarino, Frequency-coded chipless RFID tag based on dual-band resonators. IEEE Antennas Wireless Propag. Lett. 11, 126–128 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Thai, J. Mehdi, F. Chebila, H. Aubert, P. Pons, G. DeJean, M. Tentzeris, R. Plana, Design and development of a novel passive wireless ultrasensitive RF temperature transducer for remote sensing. IEEE Sensors J. 12(9), 2756–2766 (2012)CrossRefGoogle Scholar
  20. 20.
    E.M. Amin, N. Karmakar, Development of a chipless RFID temperature sensor using cascaded spiral resonators, in IEEE Sensors, (Limerick, Ireland, 2011), pp. 554–557Google Scholar
  21. 21.
    S. Preradovic, N. Kamakar, E.M. Amin, Chipless RFID tag with integrated resistive and capacitive sensors, in Asia-Pacific Microwave Conference Proceeding (APMC), pp. 1354–1357 (2011)Google Scholar
  22. 22.
    J. Naqui, M. Durán-Sindreu, F. Martín, Selective mode suppression in coplanar waveguides using metamaterial resonators. Appl. Phys. A 109(4), 1053–1058 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Naqui, M. Durán-Sindreu, F. Martín, On the symmetry properties of coplanar waveguides loaded with symmetric resonators: Analysis and potential applications, in IEEE MTT-S International Microwave Symposium Digest, (Montreal, Canada, 2012)Google Scholar
  24. 24.
    J. Naqui, M. Durán-Sindreu, F. Martín, Strategies for the implementation of sensors and RF barcodes based on transmission lines loaded with symmetric resonators, in 21st International Conference Applied Electromagnetic Communication (ICECom), (Dubrovnik, Croatia, 2013)Google Scholar
  25. 25.
    J. Naqui, F. Martín, Mechanically reconfigurable microstrip lines loaded with stepped impedance resonators and potential applications. Int. J. Antennas Propag. 2014(346838), (2014)Google Scholar
  26. 26.
    J. Naqui, M. Durán-Sindreu, F. Martín, Differential and single-ended microstrip lines loaded with slotted magnetic-LC (MLC) resonators. Int. J. Antennas Propag. 2013(640514), 8 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of EngineeringAutonomous University of BarcelonaBarcelonaSpain

Personalised recommendations