Advances in Equivalent Circuit Models of Resonator-Loaded Transmission Lines

  • Jordi NaquiEmail author
Part of the Springer Theses book series (Springer Theses)


The present chapter focuses on advances relative to equivalent circuit models of transmission lines loaded with electrically small resonators. An accurate circuit model should include all the elements (a transmission line and an array of resonators in our case) as well as all the inter-element interactions involved.


Transmission Line Complex Mode Equivalent Circuit Model Microstrip Line Couple Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Marqués, F. Martín, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications. (Wiley, New York, 2008)Google Scholar
  2. 2.
    R. Marqués, F. Medina, R. Rafii-El-Idrissi, Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65(144440) (2002)Google Scholar
  3. 3.
    L. Solymar, E. Shamonina, Waves in Metamaterials. (Oxford University Press, Oxford, 2009)Google Scholar
  4. 4.
    P. Gay-Balmaz, O.J.F. Martin, Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys. 92(5), 2929–2936 (2002)CrossRefGoogle Scholar
  5. 5.
    N. Katsarakis, T. Koschny, M. Kafesaki, E. Economou, C. Soukoulis, Electric coupling to the magnetic resonance of split ring resonators. Appl. Phys. Lett. 84(15), 2943–2945 (2004)CrossRefGoogle Scholar
  6. 6.
    J.D. Baena, J. Bonache, F. Martín, R.M. Sillero, F. Falcone, T. Lopetegi, M.A.G. Laso, J. García-García, I. Gil, M.F. Portillo, M. Sorolla, Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005)CrossRefGoogle Scholar
  7. 7.
    J. Naqui, M. Durán-Sindreu, F. Martín, Modeling split-ring resonator (SRR) and complementary split-ring resonator (CSRR) loaded transmission lines exhibiting cross-polarization effects. IEEE Antennas Wireless Propag. Lett. 12, 178–181 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Naqui, M. Durán-Sindreu, F. Martín, Selective mode suppression in coplanar waveguides using metamaterial resonators. Appl. Phys. A 109(4), 1053–1058 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Naqui, M. Durán-Sindreu, F. Martín, Selective mode suppression in microstrip differential lines by means of electric-LC (ELC) and magnetic-LC (MLC) resonators. Appl. Phys. A 115, 637–643 (2014)CrossRefGoogle Scholar
  10. 10.
    F. Martín, J. Bonache, F. Falcone, M. Sorolla, R. Marqués, Split ring resonator-based left-handed coplanar waveguide. Appl. Phys. Lett. 83(22), 4652–4654 (2003)CrossRefGoogle Scholar
  11. 11.
    F. Martín, F. Falcone, J. Bonache, R. Marqués, M. Sorolla, Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators. IEEE Microw. Wireless Compon. Lett. 13(12), 511–513 (2003)CrossRefGoogle Scholar
  12. 12.
    F. Aznar, J. Bonache, F. Martín, Improved circuit model for left-handed lines loaded with split ring resonators. Appl. Phys. Lett. 92(043512) (2008)Google Scholar
  13. 13.
    F. Aznar, M. Gil, J. Bonache, L. Jelinek, J. D. Baena, R. Marqués, F. Martín, Characterization of miniaturized metamaterial resonators coupled to planar transmission lines through parameter extraction. J. Appl. Phys. 104(114501) (2008)Google Scholar
  14. 14.
    J. Bonache, M. Gil, I. Gil, J. García-García, F. Martín, On the electrical characteristics of complementary metamaterial resonators. IEEE Microw. Wireless Compon. Lett. 16(10), 543–545 (2006)Google Scholar
  15. 15.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005)Google Scholar
  16. 16.
    R. Marqués, J. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, F. Martín, Novel small resonant electromagnetic particles for metamaterial and filter design, in International Conference on Electromagnetic in Advanced Applications (ICEAA ’03), (Torino, Italy, 2003), pp. 439–442Google Scholar
  17. 17.
    W. Hayt, J. Kemmerly, S. Durbin, Engineering Circuit Analysis. (McGraw-Hill, New York, 2011)Google Scholar
  18. 18.
    J.-S. Hong, M.J. Lancaster, Microstrip Filters for RF/Microwave Applications. (Wiley, New York, 2001)Google Scholar
  19. 19.
    F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A.A. Radkovskaya, M. Shamonin, T. Hao, C.J. Stevens, G. Faulkner, D.J. Edwards, E. Shamonina, Coupling mechanisms for split ring resonators: theory and experiment. Phys. Status Solidi B 244(4), 1170–1175 (2007)Google Scholar
  20. 20.
    E. Tatartschuk, N. Gneiding, F. Hesmer, A. Radkovskaya, E. Shamonina, Mapping inter-element coupling in metamaterials: Scaling down to infrared. J. Appl. Phys. 111(094904) (2012)Google Scholar
  21. 21.
    B.R. Bojanic, V. Milosevic, On the orientation of split-ring resonators excited by guided waves, in Metamaterials ’2012: The 6th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (St. Petersburg, Russia, 2012)Google Scholar
  22. 22.
    I. Awai, Y. Zhang, Separation of coupling coefficient between resonators into magnetic and electric components toward its application to BPF development, in China-Japan Joint Microwave Conference pp. 61–65 (2008)Google Scholar
  23. 23.
    R.R. Syms, E. Shamonina, V. Kalinin, L. Solymar, A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves. J. Appl. Phys. 97(064909) (2005)Google Scholar
  24. 24.
    R.R.A. Syms, L. Solymar, Effective permeability of a metamaterial: against conventional wisdom. Appl. Phys. Lett. 100(124103) (2012)Google Scholar
  25. 25.
    J. Neto, J. Barroso, P. Castro, Dispersion relation of split-ring resonators magnetically coupled to a TEM wave, in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), (Rio de Janeiro , Brazil, 2013) pp. 1–5Google Scholar
  26. 26.
    M. Mrozowski, J. Mazur, Matrix theory approach to complex waves [in shielded lossless guides]. IEEE Trans. Microw. Theory Tech. 40(4), 781–785 (1992)CrossRefGoogle Scholar
  27. 27.
    T. Tamir, A. Oliner, Guided complex waves. Proc. Inst. Elect. Eng. 110(2), 310–334 (1963)CrossRefGoogle Scholar
  28. 28.
    W.-X. Huang, T. Itoh, Complex modes in lossless shielded microstrip lines. IEEE Trans. Microw. Theory Tech. 36(1), 163–165 (1988)CrossRefGoogle Scholar
  29. 29.
    M.J. Freire, F. Mesa, M. Horno, Excitation of complex and backward mode on shielded lossless printed lines. IEEE Trans. Microw. Theory Tech. 47(7), 1098–1105 (1999)CrossRefGoogle Scholar
  30. 30.
    F. Elek, G. Eleftheriades, Dispersion analysis of the shielded sievenpiper structure using multiconductor transmission-line theory. IEEE Microw. Wireless Compon. Lett. 14(9), 434–436 (2004)CrossRefGoogle Scholar
  31. 31.
    R. Islam, G. Eleftheriades, On the independence of the excitation of complex modes in isotropic structures. IEEE Trans. Antennas Propag. 58(5), 1567–1578 (2010)CrossRefGoogle Scholar
  32. 32.
    J. Naqui, M. Durán-Sindreu, F. Martín, A. Fernández-Prieto, F. Mesa, F. Medina, Complex modes in periodic transmission lines based on split rings, in International Conference on Electromagnetics in Advanced Applications (ICEAA ’13), (Torino, Italy, 2013)Google Scholar
  33. 33.
    J. Naqui, A. Fernández-Prieto, F. Mesa, F. Medina, F. Martín, Effects of inter-resonator coupling in split ring resonator loaded metamaterial transmission lines. J. Appl. Phys. 115(194903) (2014)Google Scholar
  34. 34.
    J. Naqui, M. Durán-Sindreu, A. Fernández-Prieto, F. Mesa, F. Medina, F. Martín, Multimode propagation and complex waves in CSRR-based transmission-line metamaterials. IEEE Antennas Wireless Propag. Lett. 11, 1024–1027 (2012)CrossRefGoogle Scholar
  35. 35.
    R.K. Mongia, J. Hong, P. Bhartia, I.J. Bahl, RF and Microwave Coupled-Line Circuits. (Artech House, Boston, 1999)Google Scholar
  36. 36.
    J. Naqui, F. Martín, Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors. IEEE Trans. Microw. Theory Tech. 61(12), 4700–4713 (2013)Google Scholar
  37. 37.
    R. Islam, M. Zedler, G. Eleftheriades, Modal analysis and wave propagation in finite 2D transmission-line metamaterials. IEEE Trans. Antennas Propag. 59(5), 1562–1570 (2011)CrossRefGoogle Scholar
  38. 38.
    C.-H. Tsai, T.-L. Wu, A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials. IEEE Trans. Microw. Theory Tech. 58(1), 195–202 (2010)CrossRefGoogle Scholar
  39. 39.
    I. Gil, J. Bonache, M. Gil, J. García-García, F. Martín, R. Marqués, Accurate circuit analysis of resonant-type left handed transmission lines with inter-resonator coupling. J. Appl. Phys. (074908) (2006)Google Scholar
  40. 40.
    J. Selga, Synthesis of microwave circuits based on metamaterials using aggressive space mapping algorithms. Ph.D. dissertation, Universitat Autònoma de Barcelona (2013)Google Scholar
  41. 41.
    J. Selga, J. Naqui, M. Durán-Sindreu, F. Martín, A. Rodríguez, V. Boria, Application of aggressive space mapping (ASM) to the efficient synthesis of stepped impedance resonators (SIRs), in European Microwave Conference (EuMC), (Nuremberg, Germany, 2013) pp. 636–639Google Scholar
  42. 42.
    M. Makimoto, S. Yamashita, Compact bandpass filters using stepped impedance resonators. Proc. IEEE 67(1), 16–19 (1979)CrossRefGoogle Scholar
  43. 43.
    J.-K. Lee, D.-H. Lee, Y.-S. Kim, A compact low-pass filter with double-step impedance shunt stub and defected ground structure for wideband rejection. Microw. Opt. Technol. Lett. 52(1), 132–134 (2010)CrossRefGoogle Scholar
  44. 44.
    J. Park, J.-P. Kim, S. Nam, Design of a novel harmonic-suppressed microstrip low-pass filter. IEEE Microw. Wireless Compon. Lett. 17(6), 424–426 (2007)CrossRefGoogle Scholar
  45. 45.
    J. Naqui, M. Durán-Sindreu, J. Bonache, F. Martín, Implementation of shunt-connected series resonators through stepped-impedance shunt stubs: analysis and limitations. IET Microw. Antennas Propag. 5(11), 1336–1342 (2011)CrossRefGoogle Scholar
  46. 46.
    T.C. Edwards, M.B. Steer, Foundations of Interconnect and Microstrip Design. (Wiley, New York, 2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of EngineeringAutonomous University of BarcelonaBarcelonaSpain

Personalised recommendations