Skip to main content

Innovative Therapies in Systemic Lupus Erythematosus

  • Chapter
  • First Online:

Part of the book series: Rare Diseases of the Immune System ((RDIS))

Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune condition with unpredictable course, with periods of flares and remission. SLE is characterized by a broad spectrum of clinical manifestations and varying patterns of disease activity. The efficacy of current SLE medication has been questioned by treatment-related adverse side effects secondary to corticosteroid use and untargeted immunosuppression and by the increasing number of patients with refractory disease. Over the last decades, there has been major progress in the understanding of the immunopathology of SLE, paving the way for the development of new biological agents, potentially revolutionizing the treatment of SLE. A variety of novel therapeutic targets have been identified and there have been many studies in patients with SLE in an attempt to translate these new treatments into clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jordan N, Lutalo PMK, D’Cruz D (2013) Novel therapeutic agents in clinical development for systemic lupus erythematosus. BMC J 11:120–130

    Article  Google Scholar 

  2. Gottenberg J-E, Lorenzo N, Sordet C, Theulin A, Chatelus E, Sibilia J (2014) When biologics should be used in systemic lupus erythematosus? Presse Med 43:e181–e185

    Article  PubMed  Google Scholar 

  3. Ginzler EM, Moldovan I (2004) Systemic lupus erythematosus trials: successes and issues. Curr Opin Rheumatol 16:499–504

    Article  PubMed  Google Scholar 

  4. Andreoli L, Reggia R, Pea L, Frassi M, Zanola A, Cartella S, Franceschini F, Tincani A (2014) Belimumab for the treatment of refractory systemic lupus erythematosus: real-life experience in the first year of use in 18 Italian patients. IMAJ 16:651–653

    PubMed  Google Scholar 

  5. Zonana-Nacach A, Barr SG, Magder LS, Petri M (2000) Damage in systemic lupus erythematosus and its association with corticosteroids. Arthritis Rheum 43:1801–1808

    Article  CAS  PubMed  Google Scholar 

  6. Dorner T, Radbruch A, Gerd R, Burmester GR (2009) B-cell-direct therapies for autoimmune disease. Nat Rev Rheumatol 5:433–441

    Article  PubMed  Google Scholar 

  7. Schiffer L, Bethunaickan R, Ramanujam M et al (2008) Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J Immunol 180:1938–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doria A, Iaccarino L (2013) Terapia del LES. Ital J Public Health 2(1):37–53

    Google Scholar 

  9. Cragg MS, Walshe CA, Ivanov AO, Glennie MJ (2005) The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmune 8:140–174

    Article  CAS  Google Scholar 

  10. Harvey PR, Gordon C (2013) B-cell targeted therapies in systemic lupus erythematosus: successes and challenges. BioDrugs 27(2):85–95

    Article  CAS  PubMed  Google Scholar 

  11. Zhou T, Zhang J, Carter R, Kimberly R (2003) BLyS and B cell autoimmunity. Curr Dir Autoimmun 6:21–37

    Article  PubMed  Google Scholar 

  12. Ramos-Casals M, Soto MJ, Cuadrado MJ, Khamashta MA (2009) Rituximab in systemic lupus erythematosus: a systematic review of off-label use in 188 cases. Lupus 18(9):767–776

    Article  CAS  PubMed  Google Scholar 

  13. Anolik JH et al (2003) The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48:455–459

    Article  CAS  PubMed  Google Scholar 

  14. Leandro MJ, Cooper N, Cambridge G et al (2007) Bone marrow B lineage cells in patients with rheumatoid arthritis following rituximab therapy. Rheumatology 46:29–36

    Article  CAS  PubMed  Google Scholar 

  15. Beckwith H, Lightstone L (2014) Rituximab in systemic lupus erythematosus and lupus nephritis. Nephron Clin Pract 128:250–254

    Article  CAS  PubMed  Google Scholar 

  16. Favas C, Isenberg DA (2009) B-cell-depletion therapy in SLE – what are the current prospects for its acceptance? Nat Rev Rheumatol 5:711–716

    Article  CAS  PubMed  Google Scholar 

  17. Merrill JT, Neuwelt CM, Wallace DJ et al (2010) Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 62:222–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Merrill J et al (2011) Assessment of flares in lupus patients enrolled in a phase II/III study of rituximab (EXPLORER). Lupus 20:709–716

    Article  CAS  PubMed  Google Scholar 

  19. Rovin BH, Furie R, Latinis K et al (2012) Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum 64:1215–1226

    Article  CAS  PubMed  Google Scholar 

  20. Lightstone L (2012) The landscape after LUNAR: rituximab’s crater-filled path. Arthritis Rheum 64:962–965

    Article  PubMed  Google Scholar 

  21. Weidenbusch M, Rommele C, Schrottle A, Anders HJ (2013) Beyond the LUNAR trial. Efficacy of rituximab in refractory lupus nephritis. Nephrol Dial Transplant 28:106–111

    Article  CAS  PubMed  Google Scholar 

  22. Diaz-Lagares C, Croca S, Sangle S et al (2012) Efficacy of rituximab in 164 pts with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun Rev 11:357–364

    Article  CAS  PubMed  Google Scholar 

  23. Hickman RA, Hira-Kazal R, Yee C-S, Toescu V (2015) The efficacy and safety of rituximab in a chart review study of 15 pts with systemic lupus erythematosus. Clin Rheumatol 34:263–271

    Article  CAS  PubMed  Google Scholar 

  24. Moroni G, Raffiotta F, Trezzi B, Giglio E, Mezzina N, Del Papa N, Meroni P, Messa P, Sinico AR (2014) Rituximab vs mycophenolate and vs cyclophosphamide pulses for induction therapy of active lupus nephritis: a clinical observational study. Rheumatology (Oxford) 53(9):1570–1577

    Article  Google Scholar 

  25. Condon MB, Ashby D, Pepper RJ, Cook HT, Levy JB, Griffith M, Cairns TD, Lightstone L (2013) Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis 72:1280–1286

    Article  CAS  PubMed  Google Scholar 

  26. Roccatello D, Sciascia S, Rossi D, Alpa M, Naretto C, Baldovino S, Menegatti E, La Grotta R, Modena V (2011) Intensive short-term treatment with rituximab, cyclophosphamide and methylprednisolone pulses induces remission in severe cases of SLE with nephritis and avoids further immunosuppressive maintenance therapy. Nephrol Dial Transplant 26(12):3987–3992

    Article  CAS  PubMed  Google Scholar 

  27. Roccatello D, Sciascia S, Baldovino S, Rossi D, Alpa M, Naretto C, Di Simone D, Simoncini M, Menegatti E. A 4-year observation in lupus nephritis patients treated with an intensified B-lymphocyte depletion without immunosuppressive maintenance treatment-Clinical response compared to literature and immunological re-assessment. Autoimmun Rev. 2015;14(12):1123–1130

    Google Scholar 

  28. Terrier B, Amoura Z, Ravaud P et al (2010) Safety and efficacy of rituximab in systemic lupus erythematosus: results from 136 pts from the French Autoimmunity and Rituximab registry. Arthritis Rheum 62:2458–2466

    Article  CAS  PubMed  Google Scholar 

  29. van Vollenhoven RF, Emery P, Bingham CO et al (2013) Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow up of the global clinical trial programme focus on adverse events of interest in RA pts. Ann Rheum Dis 72:1496–1502

    Article  PubMed  PubMed Central  Google Scholar 

  30. Molloi ES (2011) PML and rheumatology: the contribution of disease and drugs. Cleve Clin J Med 78:S28–S32

    Article  Google Scholar 

  31. Mysler EF, Spindler AJ, Guzman R, Bijl M, Jayne D, Furie RA et al (2013) Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-bind, phase III study. Arthritis Rheum 65:2368–2379

    Article  CAS  PubMed  Google Scholar 

  32. Dorner T, Kaufmann J, Wegener WA et al (2006) Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther 8:R74

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jacobi AM, Goldenberg DM, Hiepe F et al (2006) Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal control. Ann Rheum Dis 67:450–457

    Article  Google Scholar 

  34. Al Rayes H, Touma Z (2014) Profile of epratuzumab and its potential in the treatment of systemic lupus erythematosus. Drug Des Devel Ther 8:2303–2310

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wallace DJ, Goldenberg DM (2013) Epratuzumab for systemic lupus erythematosus. Lupus 22(4):400–405

    Article  CAS  PubMed  Google Scholar 

  36. Traczewski P, Rudnicka L (2011) Treatment of systemic lupus erythematosus with epratuzumab. Br J Clin Pharmacol 71:175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Strand V, Petri M, Kalunian K, Gordon C, Wallace DJ, Hobbs K et al (2014) Epratuzumab for patients with moderate to severe flaring SLE: health-related quality of life outcomes and corticosteroid use in the randomized controlled ALLEVIATE trials and extension study SL0006. Rheumatology (Oxford) 53(3):502–511

    Article  CAS  Google Scholar 

  38. ClinicalTrials.gov. Identifier NCT01262365, a phase 3, randomized, double-blind, placebo-controlled, multicenter study of the efficacy and safety of four 12-week treatment cycles (48 weeks total) of epratuzumab in systemic lupus erythematosus subjects with moderate to severe disease (EMBODY 1); 14th Dec 2010 – [cited 30th Mar 2014])

    Google Scholar 

  39. Stohl W (2013) Future prospects in biologic therapy for systemic lupus erythematosus. Nat Rev Rheumatol 9:705–720

    Article  CAS  PubMed  Google Scholar 

  40. Stohl W (2014) Therapeutic targeting of the BAFF/APRIL axis in systemic lupus erythematosus. Expert Opin Ther Targets 18(4):473–489

    Article  CAS  PubMed  Google Scholar 

  41. Pisetsky DS, Grammer AC, Ning TC, Lipsky PE (2011) Are autoantibodies the target of B cell-direct therapy? Nat Rev Rheumatol 7:551–556

    Article  CAS  PubMed  Google Scholar 

  42. Navarra SV, Guzman RM, Gallacher AE et al (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomized, placebo-controlled, phase 3 trial. Lancet 377:721–731

    Article  CAS  PubMed  Google Scholar 

  43. Furie R, Petri M, Zamani O et al (2011) A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum 63:3918–3930

    Article  CAS  PubMed  Google Scholar 

  44. Dooley MA, Houssiau F, Aranow C, D’Cruz DP, Askanase A, Roth DA, Zhong ZJ, Cooper S, Freimuth WW, Ginzler EM (2013) Effects of belimumab treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE. Lupus 22:63

    Article  CAS  PubMed  Google Scholar 

  45. Fried AJ, Bonilla FA (2009) Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin Microbiol Rev 22:396–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kraaij T, Huizinga TW, Rabelink TJ, Teng YK (2014) Belimumab after rituximab as maintenance therapy in lupus nephritis. Rheumatology 53(11):2122–2124

    Article  PubMed  Google Scholar 

  47. Furie RA, Leon G, Thomas M, Petri MA, Chu AD, Hislop C et al (2014) A phase 2, randomised, placebo-controlled clinical trial of blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus, the PEARL-SC study. Ann Rheum Dis. http://dx.doi.org/10.1136/annrheumdis-2013-205144

  48. Kamala A, Khamashta M (2014) The efficacy of novel B cell biologics as the future of SLE treatment: a review. Autoimmun Rev 13(11):1094–1101

    Article  Google Scholar 

  49. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K et al (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404:995–999

    Article  CAS  PubMed  Google Scholar 

  50. Dall’Era M, Chakravarty E, Wallace D, Genovese M, Weisman M, Kavanaugh A et al (2007) Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum 56(12):4142–4150

    Article  PubMed  Google Scholar 

  51. Kayagaki N, Yan M, Seshasayee D, Wang H, Lee W, French DM et al (2002) BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 17(4):515–524

    Article  CAS  PubMed  Google Scholar 

  52. Mok MY (2010) The immunological basis of B-cell therapy in systemic lupus erythematosus. Int J Rheum Dis 13(1):3–11

    Article  PubMed  Google Scholar 

  53. Cunane G, Chan OT, Cassafer G, Brindis S, Kaufman E, Yen TS, Daikh DI (2004) Prevention in renal damage in murine lupus nephritis by CTLA-4Ig and cyclophosphamide. Arthritis Rheum 50:1539–1548

    Article  Google Scholar 

  54. Merrill JT, Burgos-Vargas R, Westhovens R, Chalmers A, D’Cruz D, Wallace DJ, Bae SC, Sigal L, Becker JC, Kelly S, Raghupathi K, Li T, Peng Y, Kinaszczuk M, Nash P (2010) The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 62:3077–3087

    Article  CAS  PubMed  Google Scholar 

  55. Furie R, Nicholis K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen SL et al (2011) Efficacy and safety of abatecept over 12 months in patients with lupus nephritis: results from a multicenter, randomized, double blind, placebo-controlled phase II/III study. Arthritis Rheum 63:S 962–S 963

    Article  Google Scholar 

  56. Wofsy D, Hillson JL, Diamond B (2013) Comparison of alternative primary outcome measures for use in a lupus nephritis trial. Arthritis Rheum 65(6):1586–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kalumian KC, Davis JC Jr, Merrill JT, Totoritis MC, Wofsy D (2002) Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double blind, placebo-controlled trial. Arthritis Rheum 46:3251–3258

    Article  Google Scholar 

  58. Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, Vaishnaw A (2003) A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 48:719–727

    Article  CAS  PubMed  Google Scholar 

  59. Liang B, Gardner DB, Griswold DE et al (2006) Antiinterleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology 119:296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Illei GG, Shirota Y, Yarboro C et al (2010) Tocilizumab in systemic lupus erythematosus: data on safety, preliminarily efficacy, and impact on circulating plasma cells from an open label phase I dosage-escalation study. Arthritis Rheum 62:542–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Szepietowski JC, Nilganuwong S, Wozniacka A, Kuhn A et al (2013) Phase I randomized, double-blind, placebo-controlled, multiple intravenous, dose-ascending study of Sirukumab in cutaneous or systemic lupus erythematosus. Arthritis Rheum 65:2661–2671

    CAS  PubMed  Google Scholar 

  62. Rajadhyaksha AG, Mehra S, Nadkar MY (2013) Biologics in SLE: current status. JAPI 61:262–267

    PubMed  Google Scholar 

  63. Llorente L, Richaud-Patin Y, Garcia-Padilla C et al (2000) Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum 43:1790–1800

    Article  CAS  PubMed  Google Scholar 

  64. Crow MK, Wohlgemuth J (2003) Microarray analysis of gene expression in lupus. Arthritis Rheum Ther 5:279–287

    Article  CAS  Google Scholar 

  65. Merrill JT, Wallace DJ, Petri M et al (2011) Safety profile and clinical activity of sifalimumab, a fully human anti-interferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis 70(11):1905–1913

    Article  CAS  PubMed  Google Scholar 

  66. McBride JM, Jiang J, Abbas AR et al (2012) Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum 64(11):3666–36769

    Article  CAS  PubMed  Google Scholar 

  67. Kirou KA, Gkrouzman E (2013) Anti-interferon alpha treatment in SLE. Clin Immunol 148(3):303–312

    Article  CAS  PubMed  Google Scholar 

  68. Hein E, Nielsen LA, Nielsen CT, Munthe-Fog L, Skjoedt MO, Jacobsen S, Garred P (2015) Ficolins and the lectin pathway of complement in patients with systemic lupus erythematosus. Mol Immunol 63(2):209–214

    Article  CAS  PubMed  Google Scholar 

  69. Cordeiro AC, Isenberg DA (2008) Novel therapies in lupus – focus on nephritis. Acta Reumatol Port 33:157–169

    PubMed  Google Scholar 

  70. Hillmen P, Young NS, Schubert J, Brodsky RA, Socié G, Muus P et al (2006) The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 355:1233–1243

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Hu Q, Madri J, Rollins SA, Chodera A, Matis LA (1996) Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci 93(16):8563–8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barilla-Labarca ML, Toder K, Furie R (2013) Targeting the complement system in systemic lupus erythematosus and other diseases. Clin Immunol 148(3):313–321

    Article  CAS  PubMed  Google Scholar 

  73. Baumann U, Schimidt RE, Gessner JE (2003) New insights into the pathophysiology and in vivo Function of IgG Fc receptors through gene deletion studies. Arch Immunol Ther Exp 51:399–406

    CAS  Google Scholar 

  74. Pradhan V, Patwardhan M, Ghosh K (2008) Fc gamma receptor polymorphisms in systemic lupus erythematosus and their correlation with the clinical severity of the disease. Indian J Hum Genet 14(3):77–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Michaelson JS, Wisniacki N, Burkly LC, Putterman C (2012) Role of TWEAK in lupus nephritis: a bench-to-bedside review. J Autoimmun 39(3):130–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wisniacki NC, Codding CE (2011) Phase I, randomized, double-blind, placebo-controlled, single dose, dose escalation study to evaluate the safety, tolerability and pharmacokinetics of BIIB023 (Anti-TWEAK) in subjects with rheumatoid arthritis. Arthritis Rheum 63:S858

    Google Scholar 

  77. Ghoreschi K, Gadina M (2014) Jakpot! New small molecules in autoimmune and inflammatory diseases. Exp Dermatol 23(1):7–11

    Article  CAS  PubMed  Google Scholar 

  78. Norman P (2014) Spleen tyrosine kinase inhibitors: a review of the patent literature 2010–2013. Expert Opin Ther Pat 24(5):573–595

    Article  CAS  PubMed  Google Scholar 

  79. Bahjat FR, Pine PR, Reitsma A, Cassafer G, Baluom M, Grillo S, Chang B, Zhao FF, Payan DG, Grossbard EB, Daikh DI (2008) An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine. Lupus 58(5):1433–1444

    CAS  Google Scholar 

  80. Morales-Torres J (2012) The status of fostamatinib in the treatment of rheumatoid arthritis. Expert Rev Clin Immunol 8(7):609–615

    Article  CAS  PubMed  Google Scholar 

  81. Rovin BH, Parikh SV (2014) Lupus nephritis: the evolving role of novel therapeutics. Am J Kidney Dis 63(4):677–690

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mishra MK, Wang J, Silva C, Mack M, Yong VW (2012) Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. Am J Pathol 181(2):642–651

    Article  CAS  PubMed  Google Scholar 

  83. Jolivel V, Luessi F, Masri J et al (2013) Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain 136:1048–1066

    Article  PubMed  Google Scholar 

  84. Keino H, Watanabe T, Sato Y, Okada AA (2011) Oral administration of retinoic acid receptor-alpha/beta-specific ligand Am80 suppresses experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 52(3):1548–1556

    Article  CAS  PubMed  Google Scholar 

  85. Klemann C, Raveney BJ, Klemann AK et al (2009) Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encephalomyelitis. Am J Pathol 174(6):2234–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Markopoulou A, Kyttaris VC (2013) Small molecules in the treatment of systemic lupus erythematosus. Clin Immunol 148(3):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hiepe F, Dorner T (2011) Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol 7:170–178

    Article  CAS  PubMed  Google Scholar 

  88. Neubert K et al (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14:748–755

    Article  CAS  PubMed  Google Scholar 

  89. Starke C, Frey S, Ubronaviciute V, Schett G, Winkler T, Voll R (2011) Depletion of autoreactive short- and long-lived plasma cells within nephritic kidneys of lupus mice by bortezomib. Ann Rheum Dis 2011;70:S91

    Google Scholar 

  90. Hainz N et al (2012) The proteasome inhibitor bortezomib prevents lupus nephritis in the NZB/W F1 mouse model by preservation of glomerular and tubulo-interstitial architecture. Nephron Exp Nephrol 120:e47–e58

    Article  CAS  PubMed  Google Scholar 

  91. Alexander T, Sarfert R, Klotsche J, Kuhl A et al (2015) The proteasome inhibitor bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis 0:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Fervenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fenoglio, R., Fervenza, F., Roccatello, D. (2016). Innovative Therapies in Systemic Lupus Erythematosus. In: Roccatello, D., Emmi, L. (eds) Connective Tissue Disease. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-24535-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24535-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24533-1

  • Online ISBN: 978-3-319-24535-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics