Skip to main content

Consistent Embedding Frameworks for Predictive Multi-theory Multiscale Simulations

  • Chapter
  • First Online:
  • 1454 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 226))

Abstract

In this chapter, we present the predictive multi-theory multiscale framework called consistent embedding. The characteristics of a consistently embedded set of theories is defined and illustrated by four examples. These examples show the coupling between quantum mechanical and atomistic scales, short and long time microstructural evolution, and chemical reactivity and flow dynamics. A final example carries a cautionary message in that all embedding are not necessarily consistent. Overlapping tests are essential to the establishment of a predictive multi-theory multiscale simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E.B. Tadmor, R. Phillips, M. Ortiz, Langmuir 12, 4529 (1996)

    Article  Google Scholar 

  2. M. Mullins, M.A. Dokanish, Phil. Mag. A 46, 771 (1982)

    Article  ADS  Google Scholar 

  3. R.E. Rudd, J.Q. Broughton, Phys. Rev. B 58, R5893 (1998)

    Article  ADS  Google Scholar 

  4. H. Kitagawa, A. Nakatami, Y. Sibutani, Mat. Sci. & Eng. A 176, 263 (1994)

    Article  Google Scholar 

  5. J.Q. Broughton, F.F. Abraham, N. Bernstein, E. Kaxiras, Phys. Rev. B 60, 2391 (1999)

    Article  ADS  Google Scholar 

  6. S. Kohlhoff, P. Gumbsch, H.F. Fischmeister, Phil. Mag. A 64, 851 (1991)

    Article  ADS  Google Scholar 

  7. F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras, Comp. Phys. 12, 538 (1998)

    Article  Google Scholar 

  8. S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vasishta, R.K. Kalia, Comp. Phys. Comm. 138, 143 (2001)

    Article  ADS  Google Scholar 

  9. A. Mallik, D.E. Taylor, K. Runge, J.W. Dufty, Int. J. Quant. Chem. 100, 1019–1025 (2004)

    Article  Google Scholar 

  10. M.J.S. Dewar, W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977)

    Article  Google Scholar 

  11. A. Mallik, K. Runge, H.-P. Cheng, J.W. Dufty, Mol. Simul. 31, 695 (2005)

    Article  Google Scholar 

  12. U.C. Singh, P.A. Kollman, J. Comp. Chem. 7, 718 (1986)

    Article  Google Scholar 

  13. D. Das, K.P. Eurenius, E.M. Billings, D.C. Chatfield, M. Hodos, B.R. Brooks, J. Chem. Phys. 117, 10534 (2002)

    Article  ADS  Google Scholar 

  14. M. Swart, Int. J. Quan. Chem. 91, 177 (2003)

    Article  Google Scholar 

  15. M. Eichinger, P. Tavan, J. Hutter, M. Parrinello, J. Chem. Phys. 110, 10452 (1999)

    Article  ADS  Google Scholar 

  16. Y. Zhang, T.-S. Lee, W. Yang, J. Chem Phys 110, 46 (1999)

    Article  ADS  Google Scholar 

  17. F. Maseras, K. Morokuma, J. Comp. Chem. 16, 1170 (1995)

    Article  Google Scholar 

  18. S. Humbel, S. Sieber, K. Morokuma, J. Chem. Phys. 16, 1959 (1996)

    Article  ADS  Google Scholar 

  19. M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, K. Morokuma, Phys. Chem. 100, 19357 (1998)

    Article  Google Scholar 

  20. S. Dapprish, I. Kormaromi, K.S. Byun, K. Morokuma, M.J. Frish, J. Mol. Struct: THEOCHEM 1, 461 (1999)

    Google Scholar 

  21. R. Poteau, I. Ortega, F. Alary, A.R. Solis, J.-C. Barthelat, J.-P. Daudey, J. Phys. Chem. 105, 198 (2001)

    Article  Google Scholar 

  22. A. Arneodo, G. Grasseau, M. Holschneider, Phys. Rev. Lett. 61, 2281 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  23. L. Telesca, V. Lapenna, N. Alexis, Chaos. Solitons Fractals 22, 741 (2004)

    Article  ADS  Google Scholar 

  24. S.N. Zhao, X.Y. Xiong, X.H. Cai, F. Hu, Europhys. Lett. 69, 81 (2005)

    Article  Google Scholar 

  25. D.F. Martin, P. Colella, M. Anghel, F.J. Alexander, Comput. Sci. Eng. 7, 24 (2005)

    Article  Google Scholar 

  26. T. Yanai, G.I. Fann, Z. Gan, R.J. Harrison, G. Beylkin, J. Chem. Phys. 121, 2866 (2004)

    Article  ADS  Google Scholar 

  27. G. Frantziskonis, P.A. Deymier, Modeling Simul. Mater. Sci. Eng. 8, 649–664 (2000)

    Google Scholar 

  28. G. Frantziskonis, Probab. Eng. Mech. 17, 359 (2002)

    Article  Google Scholar 

  29. G. Frantziskonis, P. Deymier, Phys. Rev. B 68, 024105 (2003)

    Article  ADS  Google Scholar 

  30. G. Frantziskonis, S.K. Mishra, S. Pannala, S. Simunovic, C.S. Daw, P. Nukala, R.O. Fox, P.A. Deymier, Int. J. Multiscale Comp. Eng. 4, 755 (2006)

    Article  Google Scholar 

  31. C.K. Chui, An Introduction to Wavelets (Academic Press, London, 1992)

    MATH  Google Scholar 

  32. I. Daubechies, Commun. Pure Appl. Math. 41, 909 (1988)

    Article  Google Scholar 

  33. I. Daubechies, Ten Lectures on Wavelets CIAM (Philadelphia, PA, 1992)

    Book  MATH  Google Scholar 

  34. S.G. Mallat, I.E.E.E. Trans, Pattern Anal. Mach. Intell. 11, 674 (1989)

    Article  Google Scholar 

  35. A. Harbo-Cour, A. Jensen, Ripples in Mathematics: Discrete Wavelet transform (Springer, New York, 2000)

    MATH  Google Scholar 

  36. G.B. Olson, Science 277, 1237 (1997)

    Article  Google Scholar 

  37. P.S. Sahni, G.S. Grest, M.P. Anderson, D.J. Srolovitz, Phys. Rev. Lett. 50, 263 (1983)

    Article  ADS  Google Scholar 

  38. L.Q. Chen, Scripta Metall. Mater. 32, 115 (1995)

    Article  ADS  Google Scholar 

  39. A. Soares, A.C. Ferro, M.A. Fortes, Scripta Metall. 19, 1491 (1985)

    Article  Google Scholar 

  40. D.W. Heermann, Computer Simulations Methods in Theoretical Physics (Springer-Verlag, Berlin, 1986)

    Book  MATH  Google Scholar 

  41. E.A. Holm, J.A. Glazier, D.J. Srolovitz, G.S. Grest, Phys. Rev. A 43, 2662 (1991)

    Article  ADS  Google Scholar 

  42. M.P. Anderson, D.J. Srolovitz, G.S. Grest, P.S. Sahni, Acta Metall. 32, 783 (1984)

    Article  Google Scholar 

  43. J. Gao, R.G. Thompson, Acta Mater. 44, 4565 (1996)

    Article  Google Scholar 

  44. D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)

    Article  Google Scholar 

  45. L. Baffico, S. Bernard, Y. Maday, G. Turinici, G. Zerah, Phys. Rev. E 66, 057701 (2002)

    Article  ADS  Google Scholar 

  46. G. Frantziskonis, K. Muralidharan, P. Deymier, S. Simunovic, P. Nukala, S. Pannala, J. Comput. Phys. 228, 8085 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  47. C. Kittel, Introduction to Solid State Physics 5th Edition (John Wiley and Sons, New York, 1976), p. 111

    Google Scholar 

  48. M.M. Sigalas, N. Garcia, J. Appl. Phys. 87, 32122 (2000)

    Article  Google Scholar 

  49. D. Garcia-Pablos, M.M. Sigilas, F.R.M. de Espinosa, M. Torres, M. Kafesaki, N. Garcia, Phys. Rev. Lett. 84, 4339 (2000)

    Article  ADS  Google Scholar 

  50. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  51. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)

    Article  ADS  Google Scholar 

  52. W.H. Press, S.A. Teulosky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing Second Edition (Cambridge University Press, Cambridge, 1992), pp. 501–502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Muralidharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muralidharan, K., Runge, K., Deymier, P.A. (2016). Consistent Embedding Frameworks for Predictive Multi-theory Multiscale Simulations. In: Deymier, P., Runge, K., Muralidharan, K. (eds) Multiscale Paradigms in Integrated Computational Materials Science and Engineering. Springer Series in Materials Science, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-24529-4_6

Download citation

Publish with us

Policies and ethics