Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 226))

Abstract

We present the aspects of the path integral molecular dynamics (PIMD) method relative to (a) its theoretical fundamental principles, (b) its applicability to model quantum systems and (c) its implementation as a simulation tool. The PIMD method is based on the discretized path integral representation of quantum mechanics. In this representation, a quantum particle is isomorphic to a closed polymer chain. The problem of the indistinguishability of quantum particles is tackled with a non-local exchange potential. When the exact density matrix of the quantum particles is used, the exchange potential is exact. We use a high temperature approximation to the density matrix leading to an approximate form of the exchange potential. This quantum molecular dynamics method allows the simulation of collections of quantum particles at finite temperature. Our algorithm can be made to scale linearly with the number of quantum states on which the density matrix is projected. Therefore, it can be optimized to run efficiently on parallel computers. We apply the PIMD method to the electron plasma in 3-dimension. The kinetic and potential energies are calculated and compared with results for similar systems simulated with a variational Monte Carlo method. Both results show good agreements with each other at all the densities studied. The method is then use to model the thermodynamic behavior of a simple alkali metal. In these simulations, ions and valence electrons are treated as classical and quantum particles, respectively. The simple metal undergoes a phase transformation upon heating. Furthermore, to demonstrate the richness of behaviors that can be studied with the PIMD method, we also report on the metal to insulator transition in a hydrogenoid lattice. Finally, in previous studies of alkali metals, electrons interacted with ions via local pseudo-potentials, an extension of the method to modeling electrons in non-local pseudo-potentials is also presented with applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (9185)

    Google Scholar 

  2. A. Selloni, P. Carnevali, R. Car, M. Parrinello, Phys. Rev. Lett. 59, 823 (1987)

    Article  ADS  Google Scholar 

  3. M. Parrinello, Solid State Comm. 102, 107 (1997)

    Article  ADS  Google Scholar 

  4. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  5. M. Parrinello, A. Rahman, J. Chem. Phys. 80, 860 (1984)

    Article  ADS  Google Scholar 

  6. D. Marx, M. Parrinello, Z. fur Physik B 95, 143 (1994)

    Article  Google Scholar 

  7. A. Alavi, D. Frenkel, J. Chem. Phys. 97, 9249 (1992)

    Article  ADS  Google Scholar 

  8. A. Alavi, J. Kohanoff, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 73, 2599 (1994)

    Article  ADS  Google Scholar 

  9. R.W. Hall, J. Chem. Phys. 89, 4212 (1988)

    Article  ADS  Google Scholar 

  10. R.W. Hall, J. Chem. Phys. 91, 1926 (1989)

    Article  ADS  Google Scholar 

  11. R.W. Hall, J. Chem. Phys. 93, 5628 (1989)

    Article  Google Scholar 

  12. D.M. Ceperley, Phys. Rev. Lett. 69, 331 (1992)

    Article  ADS  Google Scholar 

  13. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  14. S. Zhang, J. Carlson, J.E. Gubernatis, Phys. Rev. B 55, 7464 (1997)

    Article  ADS  Google Scholar 

  15. D. Chandler, P.G. Wolynes, J. Chem. Phys. 74, 4078 (1981)

    Article  ADS  Google Scholar 

  16. D.M. Ceperley, J. Stat. Phys. 63, 1237 (1991)

    Article  ADS  Google Scholar 

  17. D.M. Ceperley, Phys. Rev. Lett. 73, 2145 (1994)

    Article  ADS  Google Scholar 

  18. M. Gell-Mann, K. Bruekner, Phys. Rev. 106, 364 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  19. D.M. Ceperley, Phys. Rev. B 18, 3126 (1978)

    Article  ADS  Google Scholar 

  20. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  21. R.G. Dendrea, N.W. Ashcrofft, A.E. Carlsson, Phys. Rev. B 34, 2097 (1986)

    Article  ADS  Google Scholar 

  22. F. Perrot, M.W.C. Dharma-wardana, Phys. Rev. A 30, 2619 (1984)

    Article  ADS  Google Scholar 

  23. S. Tanaka, S. Mitake, S. Ichimaru, Phys. Rev. A 32, 1896 (1985)

    Article  ADS  Google Scholar 

  24. Oh Ki-Dong, P.A. Deymier, Phys. Rev. Lett. 81, 3104 (1998)

    Article  ADS  Google Scholar 

  25. Oh Ki-Dong, P.A. Deymier, Phys. Rev. B 58, 7577 (1998)

    Article  ADS  Google Scholar 

  26. P.A. Deymier, K.-D. Oh, Modell. Simul. MSE 12, 197 (2004)

    Google Scholar 

  27. P.A. Deymier, K.-D. Oh, J. Non-cryst. Solids, 274, 364 (2000)

    Google Scholar 

  28. Oh Ki-dong, P.A. Deymier, Phys. Rev. B 59, 11276 (1999)

    Article  ADS  Google Scholar 

  29. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw Hill, New York, 1980)

    Google Scholar 

  30. R.A. Cowley, A.D.B. Woods, G. Dolling, Phys. Rev. 150, 487 (1966)

    Article  ADS  Google Scholar 

  31. P.E. Blochl, M. Parrinello, Phys. Rev. B 45, 9413 (1992)

    Article  ADS  Google Scholar 

  32. T. Arima, Y. Tokura, J.B. Torrance, Phys. Rev. B 48, 17006 (1993)

    Article  ADS  Google Scholar 

  33. J.S. Ahn, J. Bak, H.S. Choi, T.W. Noh, J.E. Han, Y. Bang, J.H. Cho, Q.X. Jia, Phys. Rev. Lett. 82, 5321 (1999)

    Article  ADS  Google Scholar 

  34. N.F. Mott, Metal-Insulator Transitions, 2nd edn. (Taylor and Francis, London, 1990)

    Google Scholar 

  35. J. Hubbard, Proc. R. Soc. London A 276, 238 (1963)

    Article  ADS  Google Scholar 

  36. Oh Ki-Dong, P.A. Deymier, Phys. Rev. B 69, 155101 (2004)

    Article  ADS  Google Scholar 

  37. G.E. Jabbour, P.A. Deymier, Modelling and Simulation in MSE 2, 1111 (1994)

    ADS  Google Scholar 

  38. R.P. Feynman, Phys. Rev. 76, 769 (1949); ibid 90, 1116 (1953); ibid 91, 1291 (1953); and ibid 91, 1301 (1953)

    Google Scholar 

  39. R.P. Feynman, Statistical Mechanics (Benjamin, New York, 1972)

    Google Scholar 

  40. L.D. Fosdick, H.F. Jordan, Phys. Rev. 143, 58 (1966); ibid 171, 128 (1968)

    Google Scholar 

  41. E.L. Pollock, D.M. Ceperley, Phys. Rev. B 30, 2555 (1985); ibid 36, 8343 (1987)

    Google Scholar 

  42. M.F. Herman, E.J. Bruskin, B.J. Berne, J. Chem. Phys. 76, 5150 (1982)

    Google Scholar 

  43. C.B Alcock, J. Phys. Chem. Ref. Data, 23, 385 (1994)

    Google Scholar 

  44. B.J. Alder, J.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)

    Article  ADS  Google Scholar 

  45. B.J. Alder, J.E. Wainwright, J. Chem. Phys. 31, 456 (1958); ibid, 33, 1439 (1960)

    Google Scholar 

  46. J.B. Anderson, J. Chem. Phys. 63, 1499 (1975); ibid 65, 4121 (1976); and ibid 73, 3897 (1980)

    Google Scholar 

  47. A. Muramatsu et al., Int. J. Mod. Phys. C 3, 185 (1992)

    Article  ADS  Google Scholar 

  48. S.R. White, Phys. Rev. B 41, 9031 (1990)

    Google Scholar 

  49. N. Metropolis, S. Ulam, J. Am. Stat, Assoc. 44, 335 (1949)

    Google Scholar 

  50. S. Ulam, A Collection of Mathematical Problems (Interscience, New York, 1960)

    MATH  Google Scholar 

  51. R.W. Hall, J. Chem. Phys. 93, 8211 (1990)

    Article  ADS  Google Scholar 

  52. H. Kleinert, Path Integral Quantum Mechanics, Statistics, and Polymer Physics (World Scientific, Singapore, 1990)

    Book  MATH  Google Scholar 

  53. S.F. Edwards, Y.V. Gulayaev, Proc. Roy. Soc. Lond. A279, 229 (1964)

    Article  ADS  Google Scholar 

  54. D. Peak, A. Inomata, J. Math. Phys. 10, 1422 (1969)

    Article  ADS  Google Scholar 

  55. F. Basco, C.C. Bernido, M.V. Carpio-Bernido, Phys. Lett. A 157, 461 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  56. M.J. Morauscsik, The two-Nucleon Interaction, Oxford: Clarendon Press, p. 52 (1963)

    Google Scholar 

  57. D. Kiang, Amer. J. Phys. 39, 996 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  58. J.C. Phillips, L. Klienman, Phys. Rev. 116, 287 (1959)

    Article  ADS  Google Scholar 

  59. M. Cohen, V. Heine, Phys. Rev. 122, 1821 (1961)

    Article  ADS  Google Scholar 

  60. I.V. Abrenkov, V. Heine, Phil. Mag. 12, 529 (1965)

    Article  ADS  Google Scholar 

  61. J.M. Ziman, Principles of the Theory of Solids, Cambridge (University Press, England, 1972)

    Book  Google Scholar 

  62. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, San Diego, 1992)

    MATH  Google Scholar 

  63. C.F. Melius, W.A. Goddard III, Phys. Rev. A 10, 1528 (1974)

    Article  ADS  Google Scholar 

  64. D.W. Heermann, Computer simulation methods in Theoretical Physics (Springer-Verlag, Berlin, 1986)

    Book  MATH  Google Scholar 

  65. K. Ohno, K. Esfarjani, Y. Kawazoe, Computational Materials Science: From Ab-initio to Monte Carlo Methods, p. 129. In: Springer Series in Solid State Sciences, Berlin (1999)

    Google Scholar 

  66. G. Ciccotti, D. Frenkel, I.R. McDonald (eds.), Simulation of Liquids and Solids: Molecular Dynamics and Monte Carlo Methods in Statistical Mechanics (North Holland, Amsterdam, 1987)

    Google Scholar 

  67. D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  68. L. Verlet, Phys. Rev. B 159, 98 (1967)

    Article  ADS  Google Scholar 

  69. E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  70. W.W. Wood, F.R. Parker, J. Chem. Phys. 27, 720 (1957)

    Article  ADS  Google Scholar 

  71. F.G. Fumi, M.P. Tosi, J. Phys. Chem. Solids 25, 31 (1964)

    Article  ADS  Google Scholar 

  72. P.P. Ewald, Ann. Physik. 64, 253 (1921)

    Article  ADS  Google Scholar 

  73. B.R.A. Nijboer, F.W. De Wette, Physica 23, 309 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  74. S.G. Brush, H.L. Sahlin, E. Teller, J. Chem. Phys. 45, 2102 (1966)

    Article  ADS  Google Scholar 

  75. M.J.L. Sangster, M. Dixon, Adv. Phys. 25, 247–342 (1976)

    Article  ADS  Google Scholar 

  76. P. Linse, H.C. Andersen, J. Chem. Phys. 85, 3027 (1986)

    Article  ADS  Google Scholar 

  77. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)

    Article  ADS  Google Scholar 

  78. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  79. G.J. Marthyna, M.L. Klein, J. Chem. Phys. 97, 2635 (1992)

    Article  ADS  Google Scholar 

  80. M.E. Herman, E.J. Bruskin, B.J. Berne, J. Chem. Phys. 76, 5150 (1982)

    Article  ADS  Google Scholar 

  81. M.J.L. Sangster, R.M. Atwood, J. Phys. C 11, 1541 (1978)

    Article  ADS  Google Scholar 

  82. W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966)

    Google Scholar 

  83. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980)

    Google Scholar 

  84. C. Kittel, Elementary Statistical Physics (Wiley, New York, 1967)

    Google Scholar 

  85. J. Theilhaber, Phys. Fluids B 4, 2044 (1992)

    Article  ADS  Google Scholar 

  86. S. Kambayashi, J. Chihara, Phys. Rev. E 53, 6253 (1996)

    Article  ADS  Google Scholar 

  87. W.R. Magro, B. Militzer, D.M. Ceperley, B. Bernu, C. Pierleoni, in Strongly Coupled Coulomb Systems, ed. by G.J. Kalman, J.M. Rommel, K. Blagoev. Plenum Press, New York, (1998)

    Google Scholar 

  88. W.R. Magro, B. Militzer, D.M. Ceperley, B. Bernu, C. Pierleoni, in Strongly Coupled Coulomb Systems, ed. by G.J. Kalman, J.M. Rommel, and K. Blagoev, Ed., Plenum Press, New York, (1998)

    Google Scholar 

  89. B. Militzer, E.L. Pollock, Phys. Rev. E 61, 3470 (2000)

    Article  ADS  Google Scholar 

  90. G. Ortiz, P. Ballone, Phys. Rev. B 50, 1391 (1994)

    Article  ADS  Google Scholar 

  91. J. Schlipf, M. Jarrell, P.G.J. van Dongen, N. Blumer, S. Kehrein, Th Pruschke, D. Vollhardt, Phys. Rev. Lett. 82, 4890 (1999)

    Article  ADS  Google Scholar 

  92. G. Kotliar, E. Lange, M. Rozenber, Phys. Rev. Lett. 84, 5180 (2000)

    Article  ADS  Google Scholar 

  93. N.F. Mott, Philos. Mag. 6, 287 (1961)

    Article  ADS  Google Scholar 

  94. W. Kohn, C. Majumdar, Phys. Rev. 138, A1617 (1965)

    Article  ADS  Google Scholar 

  95. M. Rozenberg, G. Kotliar, X.Y. Zhang, Phys. Rev. B 49, 10181 (1994)

    Article  ADS  Google Scholar 

  96. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  Google Scholar 

  97. G. Kotliar, J. Low Temp. Phys. 126, 1009 (2002)

    Article  ADS  Google Scholar 

  98. Ning-Hua Tong, Shun-Qing Shen, Pu Fu-Cho, Phys. Rev. B 64, 235109 (2001)

    Article  ADS  Google Scholar 

  99. R. Bulla, T.A. Costi, D. Vollhardt, Phys. Rev. B 64, 045103 (2001)

    Article  ADS  Google Scholar 

  100. F. Gebhard, The Mott Metal-Insulator Transition: Models and Methods (Springer, Berlin, 1997)

    Google Scholar 

  101. X.P. Li, J.Q. Broughton, J. Chem. Phys. 86, 5094 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  102. G.B. Bachelet, D.R. Hamann, M. Schluter, Phys. Rev. 26, 4199 (1982)

    Article  ADS  Google Scholar 

  103. C.F. Melius, PhD Dissertation, California Institute of Technology, 136 Pasadena, CA 91109 (1972)

    Google Scholar 

  104. J. Cao, J. Voth, J. Chem. Phys. 99, 10070 (1993)

    Article  ADS  Google Scholar 

  105. J. Cao, J. Voth, J. Chem. Phys. 100, 5093 (1994)

    Article  ADS  Google Scholar 

  106. J. Cao, J. Voth, J. Chem. Phys. 100, 5106 (1994)

    Article  ADS  Google Scholar 

  107. J. Cao, J. Voth, J. Chem. Phys. 101, 6157 (1994)

    Article  ADS  Google Scholar 

  108. J. Cao, J. Voth, J. Chem. Phys. 101, 6168 (1994)

    Article  ADS  Google Scholar 

  109. M. Ceriotti, J. More, D.E. Manolopoulos, Chem. Phys. Comm. 185, 1019 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre A. Deymier .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Free Particle Propagator

In this Appendix, we will prove equation (2.16)

$$\rho_{0} \left( {r_{n} ,r_{n + 1} ; \epsilon} \right) = \left( {\frac{m}{{2\pi \epsilon\hbar^{2} }}} \right)^{3/2} \exp\left( { - \frac{{m\left( {r_{n} - r_{n + 1} } \right)^{2} }}{{2 \epsilon\hbar^{2} }}} \right)$$
(2.153)

We assume that every state is defined by a set of plane waves. The free particle propagator in the position representation can be written as

$$\begin{aligned} \rho_{0} (r_{i} ,r_{j} ; \epsilon) & = \left\langle {r_{i} \left| {e^{{ - \epsilon\widehat{\rm T}}} } \right|r_{j} } \right\rangle \\ & = \int {dp\left\langle {r_{i} \left| p \right.} \right\rangle \left\langle {p\left| {e^{{ - \epsilon\widehat{p}^{2} /2m}} } \right|r_{j} } \right\rangle } \\ & = \int {dp\left\langle {r_{i} \left| p \right.} \right\rangle \left\langle {p\left| {r_{j} } \right.} \right\rangle }^{{e^{{ - \epsilon\widehat{p}^{2} /2m}} }} \\ \end{aligned}$$
(2.154)

We used a completeness of momentum states, \(1 = \int {dp\left| {\left. p \right\rangle \left\langle p \right.} \right|}\), in (2.154). If we use a plane wave basis \(\left\langle {r_{i} |p} \right\rangle = \frac{1}{{\left( {2\pi \hbar } \right)^{3/2} }}{ \exp }\left( {ip \cdot r_{i} /\hbar } \right)\), (2.154) becomes

$$\begin{aligned} \rho_{0} \left( {r_{i} , r_{j} ; \epsilon} \right) & = \smallint \frac{dp}{{\left( {2\pi \hbar } \right)^{3} }}e^{{ip \cdot \left( {r_{i} - r_{j} } \right)/\hbar }} e^{{ - \epsilon p^{2} /2m}} \\ & = \frac{4\pi }{{\left( {2\pi \hbar } \right)^{3} }}\mathop \smallint \limits_{0}^{\infty } dp\, p \frac{{\sin \left( {pr_{ij} /\hbar } \right)}}{{r_{ij} /\hbar }}e^{{ - \epsilon p^{2} /2m}} \\ \end{aligned}$$
(2.155)

where \(r_{ij} = \left| {r_{i} - r_{j} } \right|\). From an integral table, we have

$$\int\limits_{0}^{\infty } {x\,\sin \left( {tx} \right) e^{{ - ax^{2} }} dx = \frac{1}{4a}\sqrt {\frac{\pi }{a}} t e^{{ - t^{2} /4a}} }$$

Thus if we set \({\text{a}} =\, \epsilon/2m\;{\text{and}}\;t = r_{ij} /\hbar\), we obtain (2.153).

Appendix 2: Exchange Force Calculation

Here we calculate the exchange force resulting from the effective exchange potential in the Hamiltonian given by (2.146)

$$f_{i,exch}^{\left( k \right)} = \frac{1}{\beta }\mathop \sum \limits_{\mu = 1}^{P} \mathop \sum \limits_{v = 1}^{P} \frac{{\theta_{\mu v}^{ + } /P^{*} }}{{\det\left( {E^{{\left( {\mu ,v} \right)}} } \right)}}\mathop \sum \limits_{p = 1}^{{N^{{\prime }} }} \mathop \sum \limits_{q = 1}^{{N^{{\prime }} }} \frac{{\partial \left( {E^{{\left( {\mu ,v} \right)}} } \right)_{pq} }}{{\partial r_{i}^{\left( k \right)} }}\left( {B^{{\left( {\mu ,v} \right)}} } \right)_{pq}$$
(2.156)

where

$$\begin{aligned} \left( {E^{{\left( {\mu ,v} \right)}} } \right)_{pq} & = \exp\left\{ { - C_{0} \left( {\left( {r_{p}^{\left( \mu \right)} \, - \, r_{q}^{\left( v \right)} } \right)^{2} - \left( {r_{p}^{\left( \mu \right)} - r_{p}^{\left( v \right)} } \right)^{2} } \right)} \right\} \\ & = \exp\left\{ {C_{0} \left( {\left( {r_{p}^{\left( v \right)} } \right)^{2} - \left( {r_{q}^{\left( v \right)} } \right)^{2} \, + \, 2r_{p}^{\left( \mu \right)} \cdot r_{q}^{\left( v \right)} - 2r_{p}^{\left( \mu \right)} \cdot r_{p}^{\left( v \right)} } \right)} \right\} \\ \end{aligned}$$
(2.157)

with \(C_{0} = \frac{Pm}{{2\beta \hbar^{2} }}. \left( {B^{{\left( {\mu ,v} \right)}} } \right)_{pq}\) is a cofactor of a matrix element \(\left( {E^{{\left( {\mu ,v} \right)}} } \right)_{pq}\). Using (2.157), we obtain

$$\begin{aligned} \frac{{\partial \left( {E^{{\left( {\mu ,v} \right)}} } \right)_{pq} }}{{\partial r_{i}^{\left( k \right)} }} &= 2C_{0} \left( {r_{p}^{\left( v \right)} \delta_{i,p} \delta_{k,v} - r_{q}^{\left( v \right)} \delta_{i,q} \delta_{k,v} + r_{q}^{\left( v \right)} \delta_{i,p} \delta_{k,\mu } + r_{p}^{\left( \mu \right)} \delta_{i,q} \delta_{k,v} - r_{p}^{\left( v \right)} \delta_{i,p} \delta_{k,\mu } - r_{p}^{\left( \mu \right)} \delta_{i,p} \delta_{k,v} } \right)\\ & \quad \left( {E^{{\left( {\mu ,v} \right)}} } \right)_{pq} \end{aligned}$$
(2.158)

The first two terms of the left-hand side of (2.158) with (2.156) become

$$\begin{aligned} f_{i,exch}^{\left( k \right),1st,2nd} & = \frac{Pm}{{\beta^{2} \hbar^{2} }}\mathop \sum \limits_{\mu = 1}^{P} \mathop \sum \limits_{v = 1}^{P} \frac{{\frac{{\theta_{\mu v}^{ + } }}{{P^{*} }}}}{{\det\left( {E^{{\left( {\mu ,v} \right)}} } \right)}}\mathop \sum \limits_{p = 1}^{{N^{{\prime }} }} \mathop \sum \limits_{q = 1}^{{N^{{\prime }} }} \left( {r_{p}^{\left( v \right)} \delta_{i,p} \delta_{k,v} - r_{q}^{\left( v \right)} \delta_{i,q} \delta_{k,v} } \right)E_{pq}^{{\left( {\mu ,v} \right)}} B_{pq}^{{\left( {\mu ,v} \right)}} \\ & = \frac{Pm}{{\beta^{2} \hbar^{2} }}\mathop \sum \limits_{\mu = 1}^{P} \frac{{\frac{{\theta_{\mu k}^{ + } }}{{P^{*} }}}}{{\det\left( {E^{{\left( {\mu ,k} \right)}} } \right)}}\left( {\mathop \sum \limits_{q = 1}^{{N^{{\prime }} }} r_{i}^{\left( k \right)} E_{iq}^{{\left( {\mu ,k} \right)}} B_{iq}^{{\left( {\mu ,k} \right)}} - \mathop \sum \limits_{p = 1}^{{N^{{\prime }} }} r_{i}^{\left( k \right)} E_{pi}^{{\left( {\mu ,k} \right)}} B_{pi}^{{\left( {\mu ,k} \right)}} } \right) = 0 \\ \end{aligned}$$
(2.159)

In (2.159), we used the relation \({ \det }\left( {E^{{\left( {k,\mu } \right)}} } \right) = { \det }\left( {E^{{\left( {\mu ,k} \right)}} } \right)\) and the matrix algebra

$$\det A = \mathop \sum \limits_{i = 1}^{N} a_{ij} A_{ij} = \mathop \sum \limits_{j = 1}^{N} a_{ij} A_{ij}$$

From the third and the fifth terms of equation (2.158), we obtain:

$$\begin{aligned} f_{i,exch}^{\left( k \right),3rd,5th} & = \frac{Pm}{{\beta^{2} \hbar^{2} }}\mathop \sum \limits_{\mu = 1}^{P} \mathop \sum \limits_{v = 1}^{P} \frac{{\theta_{\mu v}^{ + } /P^{*} }}{{\det\left( {E^{{\left( {\mu ,v} \right)}} } \right)}}\mathop \sum \limits_{p = 1}^{{N^{{\prime }} }} \mathop \sum \limits_{q = 1}^{{N^{{\prime }} }} \left( {r_{q}^{\left( v \right)} \delta_{i,p} \delta_{k,\mu } - r_{p}^{\left( v \right)} \delta_{i,p} \delta_{k,\mu } } \right)E_{pq}^{{\left( {\mu ,v} \right)}} B_{pq}^{{\left( {\mu ,v} \right)}} \\ & = \frac{Pm}{{\beta^{2} \hbar^{2} }}\mathop \sum \limits_{v = 1}^{P} \frac{{\theta_{kv}^{ + } /P^{*} }}{{\det\left( {E^{{\left( {k,v} \right)}} } \right)}}\mathop \sum \limits_{q = 1}^{{N^{{\prime }} }} \left( {r_{q}^{\left( v \right)} - r_{i}^{\left( v \right)} } \right)E_{iq}^{{\left( {k,v} \right)}} B_{iq}^{{\left( {k,v} \right)}} \\ \end{aligned}$$
(2.160)

Similarly from the fourth and sixth terms, we get

$$\begin{aligned} f_{i,exch}^{\left( k \right),4th,6th} & = \frac{Pm}{{\beta^{2} \hbar^{2} }}\mathop \sum \limits_{\mu = 1}^{P} \mathop \sum \limits_{v = 1}^{P} \frac{{\theta_{\mu v}^{ + } /P^{*} }}{{\det\left( {E^{{\left( {\mu ,v} \right)}} } \right)}}\mathop \sum \limits_{p = 1}^{{N^{{\prime }} }} \mathop \sum \limits_{q = 1}^{{N^{{\prime }} }} \left( {r_{p}^{\left( \mu \right)} \delta_{i,q} \delta_{k,v} - r_{p}^{\left( \mu \right)} \delta_{i,p} \delta_{k,v} } \right)E_{pq}^{{\left( {\mu ,v} \right)}} B_{pq}^{{\left( {\mu ,v} \right)}} \\ & = \frac{Pm}{{\beta^{2} \hbar^{2} }}\mathop \sum \limits_{\mu = 1}^{P} \frac{{\theta_{\mu k}^{ + } /P^{*} }}{{\det\left( {E^{{\left( {\mu ,k} \right)}} } \right)}}\left( {\mathop \sum \limits_{p = 1}^{{N^{{\prime }} }} r_{p}^{\left( \mu \right)} E_{pi}^{{\left( {\mu ,k} \right)}} B_{pi}^{{\left( {\mu ,k} \right)}} - \mathop \sum \limits_{q = 1}^{{N^{{\prime }} }} r_{i}^{\left( \mu \right)} E_{iq}^{{\left( {\mu ,k} \right)}} B_{iq}^{{\left( {\mu ,k} \right)}} } \right) \\ & = \frac{Pm}{{\beta^{2} \hbar^{2} }}\mathop \sum \limits_{\mu = 1}^{P} \frac{{\theta_{\mu k}^{ + } /P^{*} }}{{\det\left( {E^{{\left( {\mu ,k} \right)}} } \right)}}\left( {\mathop \sum \limits_{p = 1}^{{N^{{\prime }} }} r_{p}^{\left( \mu \right)} E_{pi}^{{\left( {\mu ,k} \right)}} B_{pi}^{{\left( {\mu ,k} \right)}} - \mathop \sum \limits_{p = 1}^{{N^{{\prime }} }} r_{i}^{\left( \mu \right)} E_{pi}^{{\left( {\mu ,k} \right)}} B_{pi}^{{\left( {\mu ,k} \right)}} } \right) \\ & = \frac{Pm}{{\beta^{2} \hbar^{2} }}\mathop \sum \limits_{\mu = 1}^{P} \frac{{\theta_{\mu k}^{ + } /P^{*} }}{{\det\left( {E^{{\left( {\mu ,k} \right)}} } \right)}}\mathop \sum \limits_{p = 1}^{{N^{{\prime }} }} \left( {r_{p}^{\left( \mu \right)} - r_{i}^{\left( \mu \right)} } \right)E_{pi}^{{\left( {\mu ,k} \right)}} B_{pi}^{{\left( {\mu ,k} \right)}} \\ \end{aligned}$$
(2.161)

From the above equations, the exchange force felt by the kth bead of the ith electron becomes

$$f_{i,exch}^{\left( k \right)} = \frac{Pm}{{\beta^{2} \hbar^{2} }}\mathop \sum \limits_{\mu = 1}^{P} \frac{{\theta_{k\mu }^{ + } /P^{*} }}{{\det\left( {E^{{\left( {k,\mu } \right)}} } \right)}}\left\{ {\det\left( {f_{i}^{{\left( {k,\mu } \right)}} } \right) + \det\left( {G_{i}^{{\left( {\mu ,k} \right)}} } \right)} \right\}$$
(2.162)

where the elements of matrix \(f_{i}^{{\left( {k,v} \right)}}\) and \(G_{i}^{{\left( {v,k} \right)}}\) are defined as

$$\left( {F_{i}^{{\left( {k,\mu } \right)}} } \right)_{pq} = \left\{ {\begin{array}{*{20}l} {\left( {r_{q}^{\left( \mu \right)} - r_{i}^{\left( \mu \right)} } \right)\left( {E^{{\left( {k,\mu } \right)}} } \right)_{pq} } \hfill & {if\,p = 1} \hfill \\ {\left( {E^{{\left( {k,\mu } \right)}} } \right)_{pq} } \hfill & {if\,p \ne 1} \hfill \\ \end{array} } \right.$$
(2.163)

and

$$\left( {G_{i}^{{\left( {\mu ,k} \right)}} } \right)_{pq} = \left\{ {\begin{array}{*{20}l} {\left( {r_{p}^{\left( \mu \right)} - r_{i}^{\left( \mu \right)} } \right)\left( {E^{{\left( {\mu ,k} \right)}} } \right)_{pq} } \hfill & {if\,q = i} \hfill \\ {\left( {E^{{\left( {\mu ,k} \right)}} } \right)_{pq} } \hfill & {if\,q \ne i} \hfill \\ \end{array} } \right.$$
(2.164)

Appendix 3: Derivation of the Force on an Electron in a Non-local Pseudo-potential

We start with the expression for the effective potential of the electron necklace in a non-local pseudo-potential given by (2.125) which is repeated below

$$\begin{aligned} V_{eff} & = - \frac{1}{\beta }\mathop \sum \limits_{n = 1}^{P} L{\text{n}}\left\{ {e^{{ - \frac{\beta }{P}V_{loc} }} e^{{ - \beta C\left( {r_{n} - r_{n + 1} } \right)^{2} }} \times {\mathfrak{F}}_{{\frac{1}{2}}} \left( {2\beta Cr_{n} r_{n + 1} } \right)\left[ {e^{{ - \frac{\beta }{P}V_{0} \left( {r_{n} } \right)}} - e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} } \right]} \right. \\ & \quad \quad \left. { \, + e^{{ - \frac{\beta }{P}\left[ {V_{loc} + V_{1} \left( {r_{n} } \right)} \right]}} e^{{ - \beta C\left( {\vec{r}_{n} - \vec{r}_{n + 1} } \right)^{2} }} } \right\} \\ \end{aligned}$$
(2.165)

The total effective force on the electron is the vector sum of all the forces acting on the nodes. The force on the nth node of the electron is given by:

$$\vec{F}_{n } = - \frac{{\partial V_{eff} }}{{\partial \vec{r}_{n} }}$$
(2.166)

Using \(x = 2\beta Cr_{n} r_{n + 1}\) and absorbing \(V_{loc}\) in the angular momentum, dependent potentials will help us to simplify the bookkeeping. The force on the nth node is the given by:

$$\begin{aligned} \vec{F}_{n} = & \frac{1}{ < \ldots > }\left\{ { - 2C\left( {r_{n} - r_{n + 1} } \right)\frac{{\vec{r}_{n} }}{{r_{n} }}e^{{ - \beta C\left( {r_{n} - r_{n + 1} } \right)^{2} }} \times {\mathfrak{F}}_{{\frac{1}{2}}} \left( \chi \right)\left[ {e^{{ - \frac{\beta }{P}V_{0} \left( {r_{n} } \right)}} - e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} } \right]} \right. \\ & \quad + 2Cr_{n + 1} \frac{{\vec{r}_{n} }}{{r_{n} }}\frac{{e^{ - \chi } }}{\chi }\left[ {\cosh \chi - \sinh \chi \left( {1 + \frac{1}{\chi }} \right)} \right] \\ & \quad \times e^{{ - \beta C\left( {r_{n} - r_{n + 1} } \right)^{2} }} \left[ {e^{{ - \frac{\beta }{P}V_{0} \left( {r_{n} } \right)}} - e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} } \right] \\ & \quad - \frac{{\vec{r}_{n} }}{{r_{n} }}e^{{ - \beta C\left( {r_{n} - r_{n + 1} } \right)^{2} }} {\mathfrak{F}}_{{\frac{1}{2}}} \left( \chi \right)\left[ {\frac{1}{P}e^{{ - \frac{\beta }{P}V_{0} \left( {r_{n} } \right)}} \frac{{\partial V_{0} \left( {r_{n} } \right)}}{{\partial r_{n} }} - \frac{1}{P}e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} \frac{{\partial V_{1} \left( {r_{n} } \right)}}{{\partial r_{n} }}} \right] \\ & \quad \left. { + \, e^{{ - \beta C\left( {\vec{r}_{n} - \vec{r}_{n + 1} } \right)^{2} }} e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} \times \left[ { - 2C\left( {\vec{r}_{n} - \vec{r}_{n + 1} } \right) - \frac{1}{P}\frac{{\partial V_{1} \left( {r_{n} } \right)}}{{\partial r_{n} }}} \right]} \right\} \\ \end{aligned}$$
(2.167)

Where < … > is the argument of the Logarithmic function in the expression of \(V_{eff}\). We would like to note that in deriving the above expression the modified Bessel function was used in its integral form [62]:

$$I_{\tau } \left( \chi \right) = \frac{{\left( {\frac{\chi }{2}} \right)^{\tau } }}{{\Gamma\left( {\tau + \frac{1}{2}} \right)\Gamma\left( {\frac{1}{2}} \right)}}\mathop \smallint \limits_{ - 1}^{1} \left( {1 - y^{2} } \right)^{{\tau - \frac{1}{2}}} e^{ \pm \chi y} dy$$

where \(\Gamma\) is the familiar Gamma function. In our case this form could be simplified to become: \({\mathfrak{F}}_{{\frac{1}{2}}} \left( \chi \right) = \frac{{e^{ - \chi } }}{\chi }\sin {\text{h}}\chi\) where we use the fact that \(\Gamma \left( {1/2} \right) = \sqrt \pi \, and\,\Gamma \left( 1 \right) = 1\).

The force on the \(\left( {n + 1} \right){\text{th}}\) node is calculated in a similar manner and given by:

$$\begin{aligned} \vec{F}_{n + 1} = & \frac{1}{ < \ldots > }\left\{ {2C\left( {r_{n} - r_{n + 1} } \right)\frac{{\vec{r}_{n + 1} }}{{r_{n + 1} }}e^{{ - \beta C\left( {r_{n} - r_{n + 1} } \right)^{2} }} \times {\mathfrak{F}}_{{\frac{1}{2}}} \left( \chi \right)\left[ {e^{{ - \frac{\beta }{P}V_{0} \left( {r_{n} } \right)}} - e^{{ - \frac{\beta }{P}V_{1} r_{n} }} } \right]} \right. \\ & \quad + 2Ce^{{ - \beta C\left( {r_{n} - r_{n + 1} } \right)^{2} }} \frac{{\vec{r}_{n + 1} }}{{r_{n + 1} }}r_{n} \frac{{e^{ - \chi } }}{\chi }\left[ {\cos \text{h}\chi - \sin \text{h}\chi \left( {1 + \frac{1}{\chi }} \right)} \right]\left[ {e^{{ - \frac{\beta }{P}V_{0} \left( {r_{n} } \right)}} - e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} } \right] \\ & \quad \left. { + 2Ce^{{ - \beta C\left( {\vec{r}_{n} - \vec{r}_{n + 1} } \right)^{2} }} e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} \left( {\vec{r}_{n} - \vec{r}_{n + 1} } \right)} \right\} \\ \end{aligned}$$
(2.168)

Appendix 4: Exchange Kinetic Energy Estimator for N-Electron System

In this section, we will calculate the exchange kinetic estimator, \({\langle{KE_{exch}} \rangle}\), which is given

$$\begin{aligned} KE_{exch} & = {\left\langle{\frac{\partial }{\partial \beta }\left( {\beta V_{eff}^{exch} } \right) }\right\rangle}\\ & = {\left\langle{\frac{\partial }{\partial \beta }\mathop \sum \limits_{s = up}^{down} \mathop \sum \limits_{k = 1}^{P} \mathop \sum \limits_{l = 1}^{P} \frac{1}{{P^{*} }}\ln \left( {\det\left( {E^{{\left( {k,l} \right)}} } \right)} \right)\theta_{kls}^{ + } }\right\rangle}\\ & = {\left\langle{\mathop \sum \limits_{s = up}^{down} \frac{1}{{P^{*} }}\mathop \sum \limits_{k = 1}^{P} \mathop \sum \limits_{l = 1}^{P} \frac{1}{{\det\left( {E^{{\left( {k,l} \right)}} } \right)}}\frac{\partial }{\partial \beta }\det\left( {E^{{\left( {k,l} \right)}} } \right)\theta_{kls}^{ + } }\right\rangle}\\ \end{aligned}$$
(2.169)

In order to differentiate a determinant, we use the following matrix algebra: if a \(N \times N\) square matrix A is function of X, we have

$$\begin{aligned} \hfill \\ \begin{array}{*{20}c} {\det A = \sum\limits_{i = 1}^{N} {a_{ij} } A_{ij} = \sum\limits_{j = 1}^{N} {a_{ij} } A_{ij} } \\ { (6.143)} \\ {\frac{\partial }{\partial X}\det A = \sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{N} {\frac{{\partial a_{ij} }}{\partial X}} } A_{ij} } \\ \end{array} \hfill \\ \end{aligned}$$
(2.170)

where a ij is an element of the matrix A and A ij is a cofactor of the element a ij . Thus if we differentiate \({ \det }\left( {E^{{\left( {k,l} \right)}} } \right)\) with respect to \(\beta\), we have

$$\begin{aligned} \frac{\partial }{\partial \beta }\det\left( {E^{{\left( {k,l} \right)}} } \right) & = \mathop \sum \limits_{i = 1}^{N} \mathop \sum \limits_{j = 1}^{N} \frac{\partial }{\partial \beta }\left( {E^{{\left( {k,l} \right)}} } \right)_{ij} \, \cdot \,A_{ij} \\ & = \mathop \sum \limits_{i = 1}^{N} \mathop \sum \limits_{j = 1}^{N} \frac{\partial }{\partial \beta }\left[ {\exp\left\{ { - \frac{Pm}{{2\beta \hbar^{2} }}\left( {\left( {r_{i}^{\left( k \right)} - r_{j}^{\left( l \right)} } \right)^{2} - \left( {r_{i}^{\left( k \right)} - r_{i}^{\left( l \right)} } \right)^{2} } \right)} \right\}} \right] \cdot A_{ij} \\ & = \frac{Pm}{{2\beta^{2} \hbar^{2} }}\mathop \sum \limits_{i = 1}^{N} \mathop \sum \limits_{j = 1}^{N} \left( {\left( {r_{i}^{\left( k \right)} - r_{j}^{\left( l \right)} } \right)^{2} - \left( {r_{i}^{\left( k \right)} - r_{i}^{\left( l \right)} } \right)^{2} } \right)\left( {E^{{\left( {k,l} \right)}} } \right)_{ij} \, \cdot \, A_{ij} \\ \end{aligned}$$
(2.171)

If we apply (2.170) to the left-hand side of the last term of (2.171), we can write that equation in a simpler form:

$$\frac{\partial }{\partial \beta }\det\left( {E^{{\left( {k,l} \right)}} } \right) = \frac{Pm}{{2\beta^{2} \hbar^{2} }}\mathop \sum \limits_{i = 1}^{N} \det\left( {H_{i}^{{\left( {k,l} \right)}} } \right)$$
(2.172)

where \(H_{i}^{{\left( {k,l} \right)}}\) is an \(N \times N\) matrix and its element \(\left( {H_{i}^{{\left( {k,l} \right)}} } \right)_{st}\) is given by

$$\begin{aligned} \left( {H_{i}^{{\left( {k,l} \right)}} } \right)_{st} = & \left\{ {\begin{array}{*{20}l} {L_{st}^{{\left( {k,l} \right)}} \exp\left( { - \frac{Pm}{{2\beta^{2} \hbar^{2} }}L_{st}^{{\left( {k,l} \right)}} } \right)} \hfill & {if\,i = t} \hfill \\ {\exp\left( { - \frac{Pm}{{2\beta^{2} \hbar^{2} }}L_{st}^{{\left( {k,l} \right)}} } \right)} \hfill & {if\,i \ne t} \hfill \\ \end{array} } \right. \\ & {(6.147)} \end{aligned}$$

and

$$L_{st}^{{\left( {k,l} \right)}} = \left( {r_{s}^{\left( k \right)} - r_{t}^{\left( l \right)} } \right)^{2} - \left( {r_{s}^{\left( k \right)} - r_{s}^{\left( l \right)} } \right)^{2}$$

From (2.170) and (2.172), the exchange kinetic estimator can be written as

$${\langle {KE_{exch}} \rangle} = {\left\langle{\mathop \sum \limits_{s = up}^{down} \frac{1}{{P^{*} }}\mathop \sum \limits_{k = 1}^{P} \mathop \sum \limits_{l = 1}^{P} \frac{1}{{\det\left( {E^{{\left( {k,l} \right)}} } \right)}}\mathop \sum \limits_{i = 1}^{N} \frac{Pm}{{2\beta^{2} \hbar^{2} }}\det\left( {H_{i}^{{\left( {k,l} \right)}} } \right)\theta_{kls}^{ + }}\right\rangle}$$
(2.173)

Appendix 5: Energy Estimator for Electron in Non-local Pseudo-potential

The energy could be calculated easily using the canonical ensemble. In this case the energy is given by:

$$\langle {E} \rangle= - \frac{1}{Z}\frac{\partial Z}{\partial \beta }$$
(2.174)

Using the partition function given by (2.124) the ensemble average of the energy is:

$${\left\langle {E} \right \rangle}= \left( {\frac{3P}{2\beta }} \right) - {\left\langle {\mathop \sum \limits_{n = 1}^{P} \frac{1}{\left\langle \ldots \right\rangle }\frac{\partial \left\langle \ldots \right\rangle }{\partial \beta } }\right \rangle}$$
(2.175)

Where < … > is the argument of the Ln function in the effective potential of an electron in the non-local pseudo-potential. For the sodium ion, the average energy is then given by the following equation:

$$\begin{aligned} \langle E\rangle & = \left( {\frac{3P}{2\beta }} \right) - \left\langle {\sum\limits_{n = 1}^{P} {\frac{1}{ < \ldots > }} \left\{ {C\left( {r_{n} - r_{n + 1} } \right)^{2} \times e^{{ - \beta C\left( {r_{n} - r_{n + 1} } \right)^{2} }} {\mathfrak{F}}_{{\frac{1}{2}}} \left( \chi \right)\left[ {e^{{ - \frac{\beta }{P}V_{0} \left( {r_{n} } \right)}} - e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} } \right]} \right.} \right. \\ & \quad + e^{{ - \beta C\left( {r_{n} - r_{n + 1} } \right)^{2} }} {\mathfrak{F}}_{{\frac{1}{2}}} \left( \chi \right)\left[ {\frac{{V_{1} \left( {r_{n} } \right)}}{P}e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} - \frac{{V_{0} \left( {r_{n} } \right)}}{P}e^{{ - \frac{\beta }{P}V_{0} \left( {r_{n} } \right)}} } \right] \\ & \quad - e^{{ - \beta C\left( {r_{n} - r_{n + 1} } \right)^{2} }} \left[ {e^{{ - \frac{\beta }{P}V_{0} \left( {r_{n} } \right)}} - e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} } \right]\left( {\frac{\chi }{\beta }} \right)\left[ {\frac{{e^{ - 2\chi } }}{\chi }\left( {1 + \frac{1}{2\chi }} \right) - \frac{1}{{2\chi^{2} }}} \right] \\ & \left. {\quad \left. { + \, C\left( {\vec{r}_{n} - \vec{r}_{n + 1} } \right)^{2} e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} e^{{ - \beta C\left( {\vec{r}_{n} - \vec{r}_{n + 1} } \right)^{2} }} - \frac{{V_{1} \left( {r_{n} } \right)}}{P}e^{{ - \frac{\beta }{P}V_{1} \left( {r_{n} } \right)}} e^{{ - \beta C\left( {\vec{r}_{n} - \vec{r}_{n + 1} } \right)^{2} }} } \right\}} \right\rangle \\ \end{aligned}$$
(2.176)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deymier, P.A., Runge, K., Oh, KD., Jabbour, G.E. (2016). Path Integral Molecular Dynamics Methods. In: Deymier, P., Runge, K., Muralidharan, K. (eds) Multiscale Paradigms in Integrated Computational Materials Science and Engineering. Springer Series in Materials Science, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-24529-4_2

Download citation

Publish with us

Policies and ethics