Skip to main content

Extraction of Robust Voids and Pockets in Proteins

  • Conference paper
  • First Online:
Visualization in Medicine and Life Sciences III

Abstract

Voids and pockets in a protein, collectively called as cavities, refer to empty spaces that are enclosed by the protein molecule. Existing methods to compute, measure, and visualize the cavities in a protein molecule are sensitive to inaccuracies in the empirically determined atomic radii. This paper presents a topological framework that enables robust computation and visualization of these structures. Given a fixed set of atoms, cavities are represented as subsets of the weighted Delaunay triangulation of atom centres. A novel notion of \((\varepsilon,\pi )\)-stable cavities helps identify cavities that are stable even after perturbing the atom radii by a small value. An efficient method is described to compute these stable cavities for a given input pair of values \((\varepsilon,\pi )\). This approach is used to identify potential pockets and channels in protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A preliminary version of this work appeared as a short paper in the Proceedings of Eurographics Conference on Visualization [30].

References

  1. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  2. Chakravarty, S., Bhinge, A., Varadarajan, R.: A procedure for detection and quantitation of cavity volumes in proteins. J. Biol. Chem. 277(35), 31345–31353 (2002)

    Article  Google Scholar 

  3. Cheng, H., Shi, X.: Quality mesh generation for molecular skin surfaces using restricted union of balls. Comput. Geom. 42(3), 196–206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. DeLano, W.: The pymol molecular graphics system. http://www.pymol.org (2002)

  5. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34(2), W116–W118 (2006)

    Article  Google Scholar 

  6. Edelsbrunner, H.: Weighted alpha shapes. University of Illinois at Urbana-Champaign, Department of Computer Science (1992)

    Google Scholar 

  7. Edelsbrunner, H.: Biological applications of computational topology. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 1395–1412. CRC Press, Boca Raton (2004)

    Google Scholar 

  8. Edelsbrunner, H.: Computational Topology. An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  9. Edelsbrunner, H., Fu, P.: Measuring space filling diagrams and voids. Tech. rep., UIUC-BI-MB-94-01, Beckman Inst., Univ. Illinois, Urbana (1994)

    Google Scholar 

  10. Edelsbrunner, H., Koehl, P.: The geometry of biomolecular solvation. Comb. Comput. Geom. 52, 243–275 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edelsbrunner, H., Mücke, E.: Three-dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  13. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29(4), 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edelsbrunner, H., Facello, M., Liang, J.: On the definition and the construction of pockets in macromolecules. Discrete Appl. Math. 88(1), 83–102 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, D.S., Sugihara, K.: Tunnels and voids in molecules via voronoi diagram. In: Proceedings of Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pp. 138–143 (2012)

    Google Scholar 

  16. Kim, D.S., Cho, Y., Sugihara, K., Ryu, J., Kim, D.: Three-dimensional beta-shapes and beta-complexes via quasi-triangulation. Comput. Aided Des. 42(10), 911–929 (2010)

    Article  Google Scholar 

  17. Kim, D.S., Ryu, J., Shin, H., Cho, Y.: Beta-decomposition for the volume and area of the union of three-dimensional balls and their offsets. J. Comput. Chem. 33(13), 1252–1273 (2012)

    Article  Google Scholar 

  18. Koehl, P., Levitt, M., Edelsbrunner, H.: Proshape: understanding the shape of protein structures. Software at http://biogeometry.duke.edu/software/proshape (2004)

  19. Krone, M., Falk, M., Rehm, S., Pleiss, J., Ertl, T.: Interactive exploration of protein cavities. Comput. Graph. Forum 30, 673–682 (2011)

    Article  Google Scholar 

  20. Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P., Subramaniam, S.: Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins. Proteins Struct. Funct. Genet. 33(1), 18–29 (1998)

    Article  Google Scholar 

  21. Liang, J., Edelsbrunner, H., Woodward, C.: Anatomy of protein pockets and cavities. Protein Sci. 7(9), 1884–1897 (1998)

    Article  Google Scholar 

  22. Lindow, N., Baum, D., Hege, H.: Voronoi-based extraction and visualization of molecular paths. IEEE Trans. Vis. Comput. Graph. 17(12), 2025–2034 (2011)

    Article  Google Scholar 

  23. Lindow, N., Baum, D., Bondar, A., Hege, H.: Dynamic channels in biomolecular systems: path analysis and visualization. In: Proceedings of IEEE Symposium on Biological Data Visualization (BioVis), pp. 99–106 (2012)

    Google Scholar 

  24. Mach, P., Koehl, P.: Geometric measures of large biomolecules: surface, volume, and pockets. J. Comput. Chem. 32(14), 3023–3038 (2011)

    Article  Google Scholar 

  25. Minor, D.L.: Puzzle plugged by protein pore plasticity. Mol. Cell 26(4), 459–460 (2007)

    Article  Google Scholar 

  26. Munkres, J.: Elements of Algebraic Topology, vol. 2. Addison-Wesley, Menlo Park (1984)

    MATH  Google Scholar 

  27. Parulek, J., Turkay, C., Reuter, N., Viola, I.: Implicit surfaces for interactive graph based cavity analysis of molecular simulations. In: 2012 IEEE Symposium on Biological Data Visualization (BioVis), pp. 115–122 (2012)

    Google Scholar 

  28. Petřek, M., Otyepka, M., Banáš, P., Košinová, P., Koča, J., Damborskỳ, J.: Caver: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinf. 7(1), 316 (2006)

    Article  Google Scholar 

  29. Petřek, M., Košinová, P., Koča, J., Otyepka, M.: MOLE: A Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15(11), 1357–1363 (2007)

    Article  Google Scholar 

  30. Sridharamurthy, R., Doraiswamy, H., Patel, S., Varadarajan, R., Natarajan, V.: Extraction of robust voids and pockets in proteins. In: EuroVis-Short Papers, pp. 67–71. The Eurographics Association, Geneve (2013)

    Google Scholar 

  31. Till, M.S., Ullmann, G.M.: Mcvol-a program for calculating protein volumes and identifying cavities by a monte carlo algorithm. J. Mol. Model. 16(3), 419–429 (2010)

    Article  Google Scholar 

  32. van den Berg, B., Clemons, W.M., Collinson, I., Modis, Y., Hartmann, E., Harrison, S.C., Rapoport, T.A.: X-ray structure of a protein-conducting channel. Nature 427(6969), 36–44 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Talha Bin Masood was supported by Microsoft Corporation and Microsoft Research India under the Microsoft Research India PhD Fellowship Award. This work was supported in part by the Department of Science and Technology, India, under Grant SR/S3/EECE/0086/2012, the DST Center for Mathematical Biology, IISc, under Grant SR/S4/MS:799/12, the NYU School of Engineering, and NSF award CNS-1229185. We would like to thank Patrice Koehl for his suggestions and for sharing the source code of Proshape.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raghavendra Sridharamurthy or Vijay Natarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sridharamurthy, R., Masood, T.B., Doraiswamy, H., Patel, S., Varadarajan, R., Natarajan, V. (2016). Extraction of Robust Voids and Pockets in Proteins. In: Linsen, L., Hamann, B., Hege, HC. (eds) Visualization in Medicine and Life Sciences III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24523-2_15

Download citation

Publish with us

Policies and ethics