Advertisement

Principles of Coulomb Explosion Imaging

  • Craig S. SlaterEmail author
Chapter
  • 386 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter introduces the concept of Coulomb explosion imaging (CEI), which is central to the work presented in Chaps.  6 and  7. The important principles upon which the technique is based are described, and the current capabilities and limitations of such experiments are discussed in the context of recent work.

Keywords

Laser Field Polarisability Tensor Multiphoton Ionisation Coulomb Explosion Pulse Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Ullrich, A. Rudenko, R. Moshammer, Annu. Rev. Phys. Chem. 63, 635 (2012)CrossRefGoogle Scholar
  2. 2.
    R. Neutze, R. Wouts, E. Weckert, D. van der Spoel, J. Hajdu, Nature 406, 752 (2000)CrossRefGoogle Scholar
  3. 3.
    S.P. Hau-Riege, R.A. London, A. Szoke, Phys. Rev. E 69, 051906 (2004)CrossRefGoogle Scholar
  4. 4.
    M.M. Seibert et al., Nature 470, 78 (2011)CrossRefGoogle Scholar
  5. 5.
    T. Gorkhover et al., Phys. Rev. Lett. 108, 245005 (2012)CrossRefGoogle Scholar
  6. 6.
    N.D. Loh et al., Nature 486, 513 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Kassemeyer et al., Opt. Express 20, 4149 (2012)CrossRefGoogle Scholar
  8. 8.
    H.N. Chapman et al., Nature 470, 73 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Barty et al., Nature Photonics 6, 35 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Lomb et al., Phys. Rev. B 84, 214111 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Barty et al., Opt. Express 17, 15508 (2009)CrossRefGoogle Scholar
  12. 12.
    E.P. Kanter et al., Phys. Rev. A 20, 834 (1979)CrossRefGoogle Scholar
  13. 13.
    Z. Vager, R. Naaman, E. Kanter, Science 244, 426 (1989)CrossRefGoogle Scholar
  14. 14.
    U. Werner, K. Beckord, J. Becker, H. Lutz, Phys. Rev. Lett. 74, 1962 (1995)CrossRefGoogle Scholar
  15. 15.
    P. Baltzer, L. Karlsson, Phys. Rev. A 38, 2322 (1988)CrossRefGoogle Scholar
  16. 16.
    H. Winick, Synchrotron Radiation Sources: A Primer, vol. 1, Series on Synchrotron Radiation Techniques and Applications (World Scientific, London, 1994)Google Scholar
  17. 17.
    L. Young et al., Nature 466, 56 (2010)CrossRefGoogle Scholar
  18. 18.
    G. Doumy et al., Phys. Rev. Lett. 106, 083002 (2011)CrossRefGoogle Scholar
  19. 19.
    B. Rudek et al., Nat. Photonics 6, 858 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Hoener et al., Phys. Rev. Lett. 104, 253002 (2010)CrossRefGoogle Scholar
  21. 21.
    J.P. Cryan et al., Phys. Rev. Lett. 105, 083004 (2010)CrossRefGoogle Scholar
  22. 22.
    N. Berrah et al., Proc. Natl. Acad. Sci. USA 108, 16912 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Schorb et al., Phys. Rev. Lett. 108, 233401 (2012)CrossRefGoogle Scholar
  24. 24.
    B.M.D. Erk, Fragmentation dynamics of small molecules upon multiple ionization by X-Ray free-electron laser pulses, Ph.D. thesis, Ruperto-Carola-University of Heidelberg, Germany 2013Google Scholar
  25. 25.
    J.L. Campbell, T. Papp, At. Data Nucl. Data Tables 77, 1 (2001)CrossRefGoogle Scholar
  26. 26.
    M. Coville, T.D. Thomas, Phys. Rev. A 43, 6053 (1991)CrossRefGoogle Scholar
  27. 27.
    I. Nenner, P. Morin, VUV and Soft X-Ray Photoionization, 1st edn. (Springer, New York City, 1996)Google Scholar
  28. 28.
    K. Codling, L. Frasinski, J. Phys. B 26, 783 (1993)CrossRefGoogle Scholar
  29. 29.
    J. Gagnon, K.F. Lee, D.M. Rayner, P.B. Corkum, V.R. Bhardwaj, J. Phys. B 41, 215104 (2008)CrossRefGoogle Scholar
  30. 30.
    M. Pitzer, M. Kunitski, A.S. Johnson, T. Jahnke, H. Sann, F. Sturm, L.P.H. Schmidt, H. Schmidt-Böcking, R. Dörner, J. Stohner, J. Kiedrowski, M. Reggelin, S. Marquardt, A. Schießer, R. Berger, M.S. Schöffler, Science 341, 1096 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Hishikawa, A. Iwamae, K. Hoshina, M. Kono, K. Yamanouchi, Chem. Phys. Lett. 282, 283 (1998)CrossRefGoogle Scholar
  32. 32.
    J.H. Sanderson et al., Phys. Rev. A 59, R2567 (1999)Google Scholar
  33. 33.
    A. Baltuska, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma, Opt. Lett. 22, 102 (1997)CrossRefGoogle Scholar
  34. 34.
    A. Rudenko, Th Ergler, B. Feuerstein, K. Zrost, C.D. Schröter, R. Moshammer, J. Ullrich, Chem. Phys. 329, 193 (2006)CrossRefGoogle Scholar
  35. 35.
    T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C.D. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 97, 193001 (2006)CrossRefGoogle Scholar
  36. 36.
    F. Légaré, K.F. Lee, I.V. Litvinyuk, P.W. Dooley, S.S. Wesolowski, P.R. Bunker, P. Dombi, F. Krausz, A.D. Bandrauk, D.M. Villeneuve, P.B. Corkum, Phys. Rev. A 71, 013415 (2005)Google Scholar
  37. 37.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)Google Scholar
  38. 38.
    M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln 84, 457 (1927)Google Scholar
  39. 39.
    S. Augst, D. Strickland, D.D. Meyerhofer, S.L. Chin, J.H. Eberly, Phys. Rev. Lett. 63, 2212 (1989)CrossRefGoogle Scholar
  40. 40.
    B. Walker, B. Sheehy, L.F. DiMauro, P. Agostini, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 73, 1227 (1994)CrossRefGoogle Scholar
  41. 41.
    A. Talebpour, S. Larochelle, S.L. Chin, J. Phys. B 31, L49 (1998)Google Scholar
  42. 42.
    M. Lezius, V. Blanchet, D.M. Rayner, D.M. Villeneuve, A. Stolow, MYu. Ivanov, Phys. Rev. Lett. 86, 51 (2001)CrossRefGoogle Scholar
  43. 43.
    A. Faibis, W. Koenig, E. Kanter, Z. Vager, Nucl. Instrum. Meth. B 13, 673 (1986)CrossRefGoogle Scholar
  44. 44.
    J.A. Davies, J.E. LeClaire, R.E. Continetti, C.C. Hayden, J. Chem. Phys. 111, 1 (1999)CrossRefGoogle Scholar
  45. 45.
    J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L.P.H. Schmidt, H. Schmidt-Böcking, Rep. Prog. Phys. 66, 1463 (2003)CrossRefGoogle Scholar
  46. 46.
    B. Friedrich, D.P. Pullman, D.R. Herschbach, J. Phys. Chem. 95, 8118 (1991)CrossRefGoogle Scholar
  47. 47.
    J.J. Omiste, M. Gärttner, P. Schmelcher, R. González-Férez, L. Holmegaard, J.H. Nielsen, H. Stapelfeldt, J. Küpper, Phys. Chem. Chem. Phys. 13, 18815 (2011)CrossRefGoogle Scholar
  48. 48.
    T. Seideman, J. Chem. Phys. 103, 7887 (1995)CrossRefGoogle Scholar
  49. 49.
    J. Ortigoso, M. Rodríguez, M. Gupta, B. Friedrich, J. Chem. Phys. 110, 3870 (1999)CrossRefGoogle Scholar
  50. 50.
    H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)CrossRefGoogle Scholar
  51. 51.
    W. Kim, P. Felker, J. Chem. Phys. 104, 1147 (1996)CrossRefGoogle Scholar
  52. 52.
    B. Friedrich, D. Herschbach, Phys. Rev. Lett. 74, 4623 (1995)CrossRefGoogle Scholar
  53. 53.
    J.L. Hansen, Imaging molecular frame dynamics using spatially oriented molecules, Ph.D. thesis, Aarhus University, 2012Google Scholar
  54. 54.
    D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Pearson Education, New Jersey, 2005)Google Scholar
  55. 55.
    V. Kumarappan, C.Z. Bisgaard, S.S. Viftrup, L. Holmegaard, H. Stapelfeldt, J. Chem. Phys. 125, 194309 (2006)CrossRefGoogle Scholar
  56. 56.
    L. Holmegaard, J.H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Kpper, G. Meijer, Phys. Rev. Lett. 102, 023001 (2009)Google Scholar
  57. 57.
    T. Seideman, E. Hamilton, Adv. At. Mol. Opt. Phys. 52, 289 (2005)CrossRefGoogle Scholar
  58. 58.
    C.Z. Bisgaard, Laser induced alignment; towards fixed-in-space molecules, Ph.D. thesis, University of Aarhus, Denmark, 2006Google Scholar
  59. 59.
    I.S. Averbukh, R. Arvieu, Phys. Rev. Lett. 87, 163601 (2001)CrossRefGoogle Scholar
  60. 60.
    M. Leibscher, I.S. Averbukh, H. Rabitz, Phys. Rev. Lett. 90, 213001 (2003)CrossRefGoogle Scholar
  61. 61.
    M. Leibscher, I.S. Averbukh, H. Rabitz, Phys. Rev. A 69, 013402 (2004)Google Scholar
  62. 62.
    J.J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, T. Seideman, Phys. Rev. Lett. 85, 2470 (2000)CrossRefGoogle Scholar
  63. 63.
    K.F. Lee, D.M. Villeneuve, P.B. Corkum, A. Stolow, J.G. Underwood, Phys. Rev. Lett. 97, 173001 (2006)CrossRefGoogle Scholar
  64. 64.
    S.S. Viftrup, V. Kumarappan, S. Trippel, H. Stapelfeldt, E. Hamilton, T. Seideman, Phys. Rev. Lett. 99, 143602 (2007)CrossRefGoogle Scholar
  65. 65.
    S.S. Viftrup, V. Kumarappan, L. Holmegaard, C.Z. Bisgaard, H. Stapelfeldt, M. Artamonov, E. Hamilton, T. Seideman, Phys. Rev. A 79, 023404 (2009)Google Scholar
  66. 66.
    J.J. Larsen, Laser induced alignment of neutral molecules, Ph.D. thesis, University of Aarhus, Denmark, 2000Google Scholar
  67. 67.
    I. Nevo, L. Holmegaard, J.H. Nielsen, J.L. Hansen, H. Stapelfeldt, F. Filsinger, G. Meijer, J. Kpper, Phys. Chem. Chem. Phys. 11, 9912 (2009)CrossRefGoogle Scholar
  68. 68.
    J.L. Hansen, J.H. Nielsen, C.B. Madsen, A.T. Lindhardt, M.P. Johansson, T. Skrydstrup, L.B. Madsen, H. Stapelfeldt, J. Chem. Phys. 136, 204310 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations