Pulsed-Field Electron-Ion Imaging
- 365 Downloads
Abstract
This chapter presents a new method of extracting and velocity-mapping both the ions and electrons resulting from photoionisation onto a single detector in each acquisition cycle. It is demonstrated that it is possible to maintain a high velocity resolution using this approach through the simultaneous imaging of the photoelectrons and photoions resulting from the (\(3+2\)) resonantly enhanced multi-photon ionisation of Br atoms produced following the photodissociation of Br\(_{2}\) at 446.41 nm. Pulsed ion extraction represents a substantial simplification in experimental design over conventional photoelectron-photoion coincidence (PEPICO) imaging spectrometers and is an important step towards performing coincidence experiments using a conventional ion imaging apparatus coupled with a fast imaging detector. The performance of the PImMS camera in this application is investigated, and a new method for the determination of the photofragment detection efficiencies based on a statistical fitting of the coincident photoelectron and photoion data is presented.
Keywords
Rise Time Extraction Potential Extraction Field Pulse Extraction High Velocity ResolutionReferences
- 1.T. Seideman, J. Chem. Phys. 107, 10420 (1997)Google Scholar
- 2.K.L. Reid, J.G. Underwood, J. Chem. Phys. 112, 3643 (2000)Google Scholar
- 3.Y. Arasaki, K. Takatsuka, K. Wang, V. McKoy, J. Chem. Phys. 112, 8871 (2000)Google Scholar
- 4.K. McCulloh, T. Sharp, and H. Rosenstock, J. Chem. Phys. 42, 3501 (1965)Google Scholar
- 5.J.A. Davies, J.E. LeClaire, R.E. Continetti, C.C. Hayden, J. Chem. Phys. 111, 1 (1999)Google Scholar
- 6.N. Bhargava Ram, C.S. Lehmann, M.H.M. Janssen, Eur. Phys. J. Web Conf. 41, 02029 (2013)Google Scholar
- 7.J.A. Davies, R.E. Continetti, D.W. Chandler, C.C. Hayden, Phys. Rev. Lett. 84, 5983 (2000)Google Scholar
- 8.O. Geßner, A.M.D. Lee, J.P. Shaffer, H. Reisler, S.V. Levchenko, A.I. Krylov, J.G. Underwood, H. Shi, A.L.L. East, D.M. Wardlaw, E.t.H. Chrysostom, C.C. Hayden, and A. Stolow, Science 311, 219 (2006)Google Scholar
- 9.U. Becker, J. Electron Spectro. Relat. Phenom. 112, 47 (2000)Google Scholar
- 10.M. Lebech, J.C. Houver, D. Dowek, Rev. Sci. Instrum. 73, 1866 (2002)Google Scholar
- 11.A. Matsuda, M. Fushitani, A. Hishikawa, J. Electron Spectrosc. Relat. Phenom. 169, 97 (2009)Google Scholar
- 12.A. Vredenborg, W.G. Roeterdink, M.H.M. Janssen, Rev. Sci. Instrum. 79, 063108 (2008)Google Scholar
- 13.A. Bodi, M. Johnson, T. Gerber, Z. Gengeliczki, B. Sztray, T. Baer, Rev. Sci. Instrum. 80, 034101 (2009)Google Scholar
- 14.X. Tang, X. Zhou, M. Niu, S. Liu, J. Sun, X. Shan, F. Liu, L. Sheng, Rev. Sci. Instrum. 80, 113101 (2009)Google Scholar
- 15.F. Burmeister, L.H. Coutinho, R.R.T. Marinho, M.G.P. Homem, M.A.A. de Morais, A. Mocellin, O. Bjrneholm, S.L. Sorensen, P.T. Fonseca, A. Lindgren, A. Naves de Brito, J. Electron Spectrosc. Relat. Phenom. 180, 6 (2010)Google Scholar
- 16.C.S. Lehmann, N. Bhargava Ram, D. Irimia, M.H.M. Janssen, Faraday Discuss. 153, 173 (2011)Google Scholar
- 17.D. Townsend, M.P. Minitti, A.G. Suits, Rev. Sci. Instrum. 74, 2530 (2003)Google Scholar
- 18.P.C. Samartzis, T.N. Kitsopoulos, M.N.R. Ashfold, Phys. Chem. Chem. Phys. 2, 453 (2000)Google Scholar