Advertisement

Pulsed-Field Electron-Ion Imaging

  • Craig S. SlaterEmail author
Chapter
  • 365 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents a new method of extracting and velocity-mapping both the ions and electrons resulting from photoionisation onto a single detector in each acquisition cycle. It is demonstrated that it is possible to maintain a high velocity resolution using this approach through the simultaneous imaging of the photoelectrons and photoions resulting from the (\(3+2\)) resonantly enhanced multi-photon ionisation of Br atoms produced following the photodissociation of Br\(_{2}\) at 446.41 nm. Pulsed ion extraction represents a substantial simplification in experimental design over conventional photoelectron-photoion coincidence (PEPICO) imaging spectrometers and is an important step towards performing coincidence experiments using a conventional ion imaging apparatus coupled with a fast imaging detector. The performance of the PImMS camera in this application is investigated, and a new method for the determination of the photofragment detection efficiencies based on a statistical fitting of the coincident photoelectron and photoion data is presented.

Keywords

Rise Time Extraction Potential Extraction Field Pulse Extraction High Velocity Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Seideman, J. Chem. Phys. 107, 10420 (1997)Google Scholar
  2. 2.
    K.L. Reid, J.G. Underwood, J. Chem. Phys. 112, 3643 (2000)Google Scholar
  3. 3.
    Y. Arasaki, K. Takatsuka, K. Wang, V. McKoy, J. Chem. Phys. 112, 8871 (2000)Google Scholar
  4. 4.
    K. McCulloh, T. Sharp, and H. Rosenstock, J. Chem. Phys. 42, 3501 (1965)Google Scholar
  5. 5.
    J.A. Davies, J.E. LeClaire, R.E. Continetti, C.C. Hayden, J. Chem. Phys. 111, 1 (1999)Google Scholar
  6. 6.
    N. Bhargava Ram, C.S. Lehmann, M.H.M. Janssen, Eur. Phys. J. Web Conf. 41, 02029 (2013)Google Scholar
  7. 7.
    J.A. Davies, R.E. Continetti, D.W. Chandler, C.C. Hayden, Phys. Rev. Lett. 84, 5983 (2000)Google Scholar
  8. 8.
    O. Geßner, A.M.D. Lee, J.P. Shaffer, H. Reisler, S.V. Levchenko, A.I. Krylov, J.G. Underwood, H. Shi, A.L.L. East, D.M. Wardlaw, E.t.H. Chrysostom, C.C. Hayden, and A. Stolow, Science 311, 219 (2006)Google Scholar
  9. 9.
    U. Becker, J. Electron Spectro. Relat. Phenom. 112, 47 (2000)Google Scholar
  10. 10.
    M. Lebech, J.C. Houver, D. Dowek, Rev. Sci. Instrum. 73, 1866 (2002)Google Scholar
  11. 11.
    A. Matsuda, M. Fushitani, A. Hishikawa, J. Electron Spectrosc. Relat. Phenom. 169, 97 (2009)Google Scholar
  12. 12.
    A. Vredenborg, W.G. Roeterdink, M.H.M. Janssen, Rev. Sci. Instrum. 79, 063108 (2008)Google Scholar
  13. 13.
    A. Bodi, M. Johnson, T. Gerber, Z. Gengeliczki, B. Sztray, T. Baer, Rev. Sci. Instrum. 80, 034101 (2009)Google Scholar
  14. 14.
    X. Tang, X. Zhou, M. Niu, S. Liu, J. Sun, X. Shan, F. Liu, L. Sheng, Rev. Sci. Instrum. 80, 113101 (2009)Google Scholar
  15. 15.
    F. Burmeister, L.H. Coutinho, R.R.T. Marinho, M.G.P. Homem, M.A.A. de Morais, A. Mocellin, O. Bjrneholm, S.L. Sorensen, P.T. Fonseca, A. Lindgren, A. Naves de Brito, J. Electron Spectrosc. Relat. Phenom. 180, 6 (2010)Google Scholar
  16. 16.
    C.S. Lehmann, N. Bhargava Ram, D. Irimia, M.H.M. Janssen, Faraday Discuss. 153, 173 (2011)Google Scholar
  17. 17.
    D. Townsend, M.P. Minitti, A.G. Suits, Rev. Sci. Instrum. 74, 2530 (2003)Google Scholar
  18. 18.
    P.C. Samartzis, T.N. Kitsopoulos, M.N.R. Ashfold, Phys. Chem. Chem. Phys. 2, 453 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations