Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 463 Accesses

Abstract

This chapter presents a new method of extracting and velocity-mapping both the ions and electrons resulting from photoionisation onto a single detector in each acquisition cycle. It is demonstrated that it is possible to maintain a high velocity resolution using this approach through the simultaneous imaging of the photoelectrons and photoions resulting from the (\(3+2\)) resonantly enhanced multi-photon ionisation of Br atoms produced following the photodissociation of Br\(_{2}\) at 446.41 nm. Pulsed ion extraction represents a substantial simplification in experimental design over conventional photoelectron-photoion coincidence (PEPICO) imaging spectrometers and is an important step towards performing coincidence experiments using a conventional ion imaging apparatus coupled with a fast imaging detector. The performance of the PImMS camera in this application is investigated, and a new method for the determination of the photofragment detection efficiencies based on a statistical fitting of the coincident photoelectron and photoion data is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Seideman, J. Chem. Phys. 107, 10420 (1997)

    Google Scholar 

  2. K.L. Reid, J.G. Underwood, J. Chem. Phys. 112, 3643 (2000)

    Google Scholar 

  3. Y. Arasaki, K. Takatsuka, K. Wang, V. McKoy, J. Chem. Phys. 112, 8871 (2000)

    Google Scholar 

  4. K. McCulloh, T. Sharp, and H. Rosenstock, J. Chem. Phys. 42, 3501 (1965)

    Google Scholar 

  5. J.A. Davies, J.E. LeClaire, R.E. Continetti, C.C. Hayden, J. Chem. Phys. 111, 1 (1999)

    Google Scholar 

  6. N. Bhargava Ram, C.S. Lehmann, M.H.M. Janssen, Eur. Phys. J. Web Conf. 41, 02029 (2013)

    Google Scholar 

  7. J.A. Davies, R.E. Continetti, D.W. Chandler, C.C. Hayden, Phys. Rev. Lett. 84, 5983 (2000)

    Google Scholar 

  8. O. Geßner, A.M.D. Lee, J.P. Shaffer, H. Reisler, S.V. Levchenko, A.I. Krylov, J.G. Underwood, H. Shi, A.L.L. East, D.M. Wardlaw, E.t.H. Chrysostom, C.C. Hayden, and A. Stolow, Science 311, 219 (2006)

    Google Scholar 

  9. U. Becker, J. Electron Spectro. Relat. Phenom. 112, 47 (2000)

    Google Scholar 

  10. M. Lebech, J.C. Houver, D. Dowek, Rev. Sci. Instrum. 73, 1866 (2002)

    Google Scholar 

  11. A. Matsuda, M. Fushitani, A. Hishikawa, J. Electron Spectrosc. Relat. Phenom. 169, 97 (2009)

    Google Scholar 

  12. A. Vredenborg, W.G. Roeterdink, M.H.M. Janssen, Rev. Sci. Instrum. 79, 063108 (2008)

    Google Scholar 

  13. A. Bodi, M. Johnson, T. Gerber, Z. Gengeliczki, B. Sztray, T. Baer, Rev. Sci. Instrum. 80, 034101 (2009)

    Google Scholar 

  14. X. Tang, X. Zhou, M. Niu, S. Liu, J. Sun, X. Shan, F. Liu, L. Sheng, Rev. Sci. Instrum. 80, 113101 (2009)

    Google Scholar 

  15. F. Burmeister, L.H. Coutinho, R.R.T. Marinho, M.G.P. Homem, M.A.A. de Morais, A. Mocellin, O. Bjrneholm, S.L. Sorensen, P.T. Fonseca, A. Lindgren, A. Naves de Brito, J. Electron Spectrosc. Relat. Phenom. 180, 6 (2010)

    Google Scholar 

  16. C.S. Lehmann, N. Bhargava Ram, D. Irimia, M.H.M. Janssen, Faraday Discuss. 153, 173 (2011)

    Google Scholar 

  17. D. Townsend, M.P. Minitti, A.G. Suits, Rev. Sci. Instrum. 74, 2530 (2003)

    Google Scholar 

  18. P.C. Samartzis, T.N. Kitsopoulos, M.N.R. Ashfold, Phys. Chem. Chem. Phys. 2, 453 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Slater .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Slater, C.S. (2016). Pulsed-Field Electron-Ion Imaging. In: Studies of Photoinduced Molecular Dynamics Using a Fast Imaging Sensor. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-24517-1_4

Download citation

Publish with us

Policies and ethics