Experimental Techniques and Methods of Data Analysis

  • Craig S. SlaterEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter details the experimental methods and apparatus used in the work presented in this thesis. The experiments were performed in two separate laboratories: that of Prof. Mark Brouard at the University of Oxford, and that of Prof. Henrik Staplefeldt at the University of Aarhus. Both apparatus are variants of a conventional velocity-map ion imaging (VMI) spectrometer. The fundamental principals of velocity-map ion imaging were introduced in Sect.  1.5 and are reviewed briefly here, whereafter each spectrometer is described in detail. The Pixel Imaging Mass Spectrometry (PImMS) camera, which is central to the work undertaken in this thesis, is introduced and the design and function of the device are described in detail. Experimental results are presented characterising the performance and characteristics of the device. In addition to experimental methods, this chapter also describes the various data analysis routines used to extract scientifically pertinent information from the experimental data.


Reaction Chamber Probe Pulse Time Code Phosphor Screen Coulomb Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Johnsen, Ion imaging, applications and extensions. Ph.D. thesis, University of Oxford (2010)Google Scholar
  2. 2.
    P. Richharia, Sol. Energ. Mater. 20, 199 (1990)CrossRefGoogle Scholar
  3. 3.
    M. Krems, J. Zirbel, M. Thomason, R.D. DuBois, Rev. Sci. Instrum. 76, 093305 (2005)CrossRefGoogle Scholar
  4. 4.
    U. Even, J. Jortner, D. Noy, N. Lavie, C. Cossart-Magos, J. Chem. Phys. 112, 8068 (2000)CrossRefGoogle Scholar
  5. 5.
    M. Hillenkamp, S. Keinan, U. Even, J. Chem. Phys. 118, 8699 (2003)CrossRefGoogle Scholar
  6. 6.
    F. Filsinger, J. Kpper, G. Meijer, L. Holmegaard, J.H. Nielsen, I. Nevo, J.L. Hansen, H. Stapelfeldt, J. Chem. Phys. 131, 064309 (2009)CrossRefGoogle Scholar
  7. 7.
    G.E. Chamberlain, J.C. Zorn, Phys. Rev. 129, 677 (1963)CrossRefGoogle Scholar
  8. 8.
    J.L. Hansen, Imaging molecular frame dynamics using spatially oriented molecules. Ph.D. thesis, Aarhus University (2012)Google Scholar
  9. 9.
    H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Rulliere, Femtosecond Laser Pulses: Principles and Experiments, 2nd edn. (Springer, New York, 2004)Google Scholar
  11. 11.
    J.L. Hansen, J.H. Nielsen, C.B. Madsen, A.T. Lindhardt, M.P. Johansson, T. Skrydstrup, L.B. Madsen, H. Stapelfeldt, J. Chem. Phys. 136, 204310 (2012)CrossRefGoogle Scholar
  12. 12.
    B.J. Whitaker, Imaging in Chemical Dynamics (Oxford University Press, Oxford, 2000)Google Scholar
  13. 13.
    F.B. Hildebrand, Methods of Applied Mathematics (Prentice-Hall, Englewood Cliffs, 1952)Google Scholar
  14. 14.
    R.N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1978)Google Scholar
  15. 15.
    L.M. Smith, D.R. Keefer, S.I. Sudharsanan, J. Quant. Spectrosc. Radiat. Transf. 39, 367 (1988)CrossRefGoogle Scholar
  16. 16.
    S. Manzhos, H.-P. Loock, Comput. Phys. Commun. 154, 76 (2003)CrossRefGoogle Scholar
  17. 17.
    M.J.J. Vrakking, Rev. Sci. Instrum. 72, 4084 (2001)CrossRefGoogle Scholar
  18. 18.
    G.A. Garcia, L. Nahon, I. Powis, Rev. Sci. Instrum. 75, 4989 (2004)CrossRefGoogle Scholar
  19. 19.
    V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)CrossRefGoogle Scholar
  20. 20.
    J.J. John, M. Brouard, A. Clark, J. Crooks, E. Halford, L. Hill, J.W.L. Lee, A. Nomerotski, R. Pisarczyk, I. Sedgwick, C.S. Slater, R. Turchetta, C. Vallance, E. Wilman, B. Winter, W.H. Yuen, JINST 7, C08001 (2012)CrossRefGoogle Scholar
  21. 21.
    J.A. Ballin, J.P. Crooks, P.D. Dauncey, A.-M. Magnan, Y. Mikami, O.D. Miller, M.N., V. Rajovic, M. Stanitzki, K. Stefanov, R. Turchetta, M. Tyndel, E.G. Villani, N.K. Watson, J.A. Wilson, Sensors 8, 5336 (2008)Google Scholar
  22. 22.
    K. Arndt, G. Bolla, D. Bortoletto, K. Giolo, R. Horisberger, A. Roy, T. Rohe, Nucl. Instrum. Methods Phys. Res. A 511, 106 (2003)Google Scholar
  23. 23.
    C. Gemme, Nucl. Instrum. Methods Phys. Res. A 501, 87 (2003)Google Scholar
  24. 24.
    S.E. Bohndiek, E.J. Cook, C.D. Arvantis, A. Olivo, G.J. Royle, A.T. Clark, M.L. Prydderch, R. Turchetta, R.D. Speller, Phys. Med. Biol. 53, 655 (2008)CrossRefGoogle Scholar
  25. 25.
    A.R. Faruqi, R. Henderson, Curr. Opin. Struct. Biol. 17, 549 (2007)CrossRefGoogle Scholar
  26. 26.
    C. Vallance, M. Brouard, A. Lauer, C.S. Slater, E. Halford, B. Winter, S.J. King, J.W.L. Lee, D. Pooley, I. Sedgwick, R. Turchetta, A. Nomerotski, J.J. John, L. Hill, Phys. Chem. Chem. Phys. 16, 383 (2014)CrossRefGoogle Scholar
  27. 27.
    A.T. Clark, J.P. Crooks, I. Sedgwick, R. Turchetta, J.W.L. Lee, J.J. John, E.S. Wilman, L. Hill, E. Halford, C.S. Slater, B. Winter, W.-H. Yuen, S.H. Gardiner, M.L. Lipciuc, M. Brouard, A. Nomerotski, C. Vallance, J. Phys. Chem. A 116, 10897 (2012)CrossRefGoogle Scholar
  28. 28.
    G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, Hoboken, 2010)Google Scholar
  29. 29.
    Y. Tang, W.-B. Lee, Z. Hu, B. Zhang, K.-C. Lin, J. Chem. Phys. 126, 064302 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations