Skip to main content

Global Climate Change and Wine Safety

  • Chapter
  • First Online:
Wine Safety, Consumer Preference, and Human Health

Abstract

Climate change presents risks and opportunities for the wine industry. Little has been written about possible impacts on wine safety. This chapter draws on the latest scientific consensus regarding climate change to examine how changing production environments could be realised in the vineyard and winery. The impacts of climate change are likely to vary between viticultural regions, so this chapter looks at a range of conditions: temperature, precipitation, humidity, variability and extreme weather events which could impact viticulture and wine to differing degrees in different locations. It identifies wine safety risks resulting from climatic conditions directly, and indirect risks from practices employed to manage climatic conditions and weather events. Whilst climatic trends and changes to average conditions can often be managed in the vineyard, the frequency and nature of extreme events may prevent appropriate management strategies being implemented. In the winery a combination of oenological capability and due diligence is required to ensure product quality and safety. These will function best when supported by appropriate legal or regulatory control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anli E, Bayram M. Ochratoxin A in wines. Food Rev Int. 2009;25(3):214–32.

    Article  CAS  Google Scholar 

  • Austin ME, Bondari K. A study of cultural and environmental-factors on the yield of Vitis-rotundifolia. Sci Hortic. 1988;34:219–27.

    Article  Google Scholar 

  • Barata A, Malfeito-Ferreira M, Loureiro V. The microbial ecology of wine grape berries. Int J Food Microbiol. 2012;153(3):243–59.

    Article  CAS  Google Scholar 

  • Battilani P, Giorni P, Petri A. Epidemiology of toxin-producing fungi and ochratoxin A occurrence in grape. In: Xu X, Bailey JA, Cooke BM, editors. Epidemiology of mycotoxin producing fungi. Dordrecht: Springer Netherlands; 2003. p. 715–22.

    Chapter  Google Scholar 

  • Bauer FF, Pretorius IS. Yeast stress response and fermentation efficiency: how to survive the making of wine-a review. SA J Enol Vitic. 2000;21:27–51.

    CAS  Google Scholar 

  • Bebber DP, Ramotowski MAT, Gurr SJ. Crop pests and pathogens move polewards in a warming world. Nat Clim Chang. 2013;3(11):985–8.

    Article  Google Scholar 

  • Bell S-J, Henschke PA. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res. 2005;11(3):242–95.

    Article  CAS  Google Scholar 

  • Bell TL, Stephens SL, Moritz MA. Short-term physiological effects of smoke on grapevine leaves. Int J Wildl Fire. 2013;22(7):933–46. CSIRO Publishing.

    Article  CAS  Google Scholar 

  • Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F. Modelling the impact of future climate scenarios on yield and yield variability on grapevine. Clim Res. 1996;7:213–24.

    Article  Google Scholar 

  • Bisson LF. Stuck and sluggish fermentations. Am J Enol Vitic. 1999;50(1):107–19.

    CAS  Google Scholar 

  • Borneman AR, Schmidt SA, Pretorius IS. At the cutting-edge of grape and wine biotechnology. Trends Genet. 2013;29(4):263–71.

    Article  CAS  Google Scholar 

  • Boulton RB, Singleton VL, Bisson LF, Kunkee RE. Principles and practices of winemaking. London: Champman & Hall; 1995.

    Google Scholar 

  • Caboni P, Cabras P. Pesticides’ influence on wine fermentation. Adv Food Nutr Res. 2010;59:43–62.

    Article  CAS  Google Scholar 

  • Caffarra A, Rinaldi M, Eccel E, Rossi V, Pertot I. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric Ecosyst Environ. 2012;148:89–101.

    Article  Google Scholar 

  • Calhelha RC, Andrade JV, Ferreira IC, Estevinho LM. Toxicity effects of fungicide residues on the wine-producing process. Food Microbiol. 2006;23(4):393–8.

    Article  CAS  Google Scholar 

  • Catarino S, Madeira M, Monteiro F, Rocha F, Curvelo-Garcia AS, de Sousa RB. Effect of bentonite characteristics on the elemental composition of wine. J Agric Food Chem. 2008;56(1):158–65.

    Article  CAS  Google Scholar 

  • Chakraborty S, Tiedemann A, Teng P. Climate change: potential impact on plant diseases. Environ Pollut. 2000;108(3):317–26.

    Article  CAS  Google Scholar 

  • Cordente AG, Cordero-Bueso G, Pretorius IS, Curtin CD. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res. 2013;13(1):62–73.

    Article  CAS  Google Scholar 

  • Csutorás C, Rácz K, Nagy GZ, Hudák O, Rácz L. Large scale experiments on the investigation of the effect of high concentrations of aflatoxin B1 on the fermentation of different wines. J Agric Chem Environ. 2014;03(02):41–7.

    Google Scholar 

  • Čuš F, Česnik HB, Bolta ŠV, Gregorčič A. Pesticide residues in grapes and during vinification process. Food Control. 2010;21(11):1512–8.

    Article  Google Scholar 

  • Davis CR, Wibowo DJ, Lee TH, Fleet GH. Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Appl Environ Microbiol. 1986;51(3):539–45.

    CAS  Google Scholar 

  • Deckwart M, Carstens C, Webber-Witt M, Schäfer V, Eichhorn L, Schröter F, et al. Impact of wine manufacturing practice on the occurrence of fining agents with allergenic potential. Food Addit Contam Part A. 2014;31(11):1805–17.

    Article  CAS  Google Scholar 

  • Del Prete V, Rodriguez H, Carrascosa AV, Rivas de las B, García-Moruno E, Muñoz R. In vitro removal of ochratoxin A by wine lactic acid bacteri. J Food Prot. 2007;70(9):2155–60.

    Google Scholar 

  • Duchêne E, Schneider CS. Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev. 2005;25:93–9.

    Article  Google Scholar 

  • EC Council Regulation (EC). No 479/2008. Off J Eur Union. 2008;148:1–64.

    Google Scholar 

  • El Khoury A, Rizk T, Lteif R, Azouri H, Delia M-L, Lebrihi A. Fungal contamination and Aflatoxin B1 and Ochratoxin A in Lebanese wine-grapes and musts. Food Chem Toxicol. 2008;46(6):2244–50.

    Article  Google Scholar 

  • Evans K. Assessing and managing disease-affected fruit in the vineyard: the Australian experience. In: Making the best out of difficult vintages: managing sub-optimal fruit in the winery. Australian Society of viticulture and oenology seminar; 2013. p. 11–9.

    Google Scholar 

  • FAO/WHO. Sixty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives. 2009.

    Google Scholar 

  • Fernández MJ, Oliva J, Barba A, Cámara MA. Fungicide dissipation curves in winemaking processes with and without maceration step. J Agric Food Chem. 2005;53(3):804–11.

    Article  Google Scholar 

  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012;1(2):94–110.

    Article  Google Scholar 

  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol. 2013;57(6):909–25.

    Article  CAS  Google Scholar 

  • Fuller MP, Hamed F, Wisniewski M, Glenn DM. Protection of plants from frost using hydrophobic particle film and acrylic polymer. Ann Appl Biol. 2003;143(1):93–8.

    Article  CAS  Google Scholar 

  • Garau VL, De Melo Abreu S, Caboni P, Angioni A, Alves A, Cabras P. Residue-free wines: fate of some quinone outside inhibitor (QoI) fungicides in the winemaking process. J Agric Food Chem. 2009;57(6):2329–33.

    Article  CAS  Google Scholar 

  • González-Rodríguez RM, Cancho-Grande B, Simal-Gándara J. Decay of fungicide residues during vinification of white grapes harvested after the application of some new active substances against downy mildew. Food Chem. 2011;125(2):549–60.

    Article  Google Scholar 

  • Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, et al. Climate change, wine, and conservation. Proc Natl Acad Sci U S A. 2013;110(17):6907–12.

    Article  CAS  Google Scholar 

  • Harris S, Ryona I, Sacks GL. Behavior of 3-isobutyl-2-hydroxypyrazine (IBHP), a key intermediate in 3-isobutyl-2-methoxypyrazine (IBMP) metabolism, in ripening wine grapes. J Agric Food Chem. 2012;60(48):11901–8.

    Article  CAS  Google Scholar 

  • IARC. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Lyon: IARC; 1993. p. 599.

    Google Scholar 

  • IARC. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 96. Alcohol consumption and ethyl carbamate. Lyon: IARC; 2010.

    Google Scholar 

  • Iland PG, Dry PR, Proffit T, Tyerman S. The grapevine: from the science to the practice of growing vines for wine. Adelaide: Patrick Iland Wine Promotions; 2011.

    Google Scholar 

  • Inoue T, Nagatomi Y, Uyama A, Mochizuki N. Degradation of aflatoxin B1 during the fermentation of alcoholic beverages. Toxins. 2013;70(7):1219–29.

    Article  Google Scholar 

  • IPCC. Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al., editors. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 1–1552.

    Google Scholar 

  • Jones GV, Alves F. Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. Int J Glob Warm. 2012;4(3-4):383–406.

    Article  Google Scholar 

  • Keller M. Photosynthesis and Respiration. In: Keller M, editor. The science of grapevines: anatomy and physiology. San Diego, CA: Academic; 2010a. p. 107–23.

    Chapter  Google Scholar 

  • Keller M. Developmental physiology. In: Keller M, editor. The science of grapevines: anatomy and physiology. San Diego, CA: Academic; 2010b. p. 169–225.

    Chapter  Google Scholar 

  • Keller M. Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine Res. 2010c;16:56–69.

    Article  Google Scholar 

  • Kelly D, Zerihun A, Hayasaka Y, Gibberd M. Winemaking practice affects the extraction of smoke-borne phenols from grapes into wines. Aust J Grape Wine Res. 2014;20(3):386–93.

    Article  CAS  Google Scholar 

  • Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, et al. Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem. 2004;68(4):968–72.

    Article  CAS  Google Scholar 

  • Kutyna DR, Varela C, Stanley GA, Borneman AR, Henschke PA, Chambers PJ. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl Microbiol Biotechnol. 2012;93(3):1175–84.

    Article  CAS  Google Scholar 

  • Landete JM, Ferrer S, Pardo I. Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control. 2007;18(12):1569–74.

    Article  CAS  Google Scholar 

  • Leāo C, van Uden N. Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnol Bioeng. 1982;24(11):2601–4.

    Article  Google Scholar 

  • Leão C, Van Uden N. Effects of ethanol and other alkanols on the ammonium transport system of Saccharomyces cerevisiae. Biotechnol Bioeng. 1983;25(8):2085–9.

    Article  Google Scholar 

  • Leão C, van Uden N. Effects of ethanol and other alkanols on the general amino acid permease of Saccharomyces cerevisiae. Biotechnol Bioeng. 1984;26(4):403–5.

    Article  Google Scholar 

  • Marangon M, Van Sluyter SC, Haynes PA, Waters EJ. Grape and wine proteins: their fractionation by hydrophobic interaction chromatography and identification by chromatographic and proteomic analysis. J Agric Food Chem. 2009;57(10):4415–25.

    Article  CAS  Google Scholar 

  • Maury C, Sarni-Manchado P, Lefebvre S, Cheynier V, Moutounet M. Influence of fining with plant proteins on proanthocyanidin composition of red wines. Am J Enol Vitic. 2003;33:105–11.

    Google Scholar 

  • Mayr CM, Parker M, Baldock GA, Black CA, Pardon KH, Williamson PO, et al. Determination of the importance of in-mouth release of volatile phenol glycoconjugates to the flavor of smoke-tainted wines. J Agric Food Chem. 2014;62(11):2327–36.

    Article  CAS  Google Scholar 

  • Medina A, Mateo R, López-Ocaña L, Valle-Algarra FM, Jiménez M. Study of Spanish grape mycobiota and ochratoxin A production by Isolates of Aspergillus tubingensis and other members of Aspergillus section Nigri. Appl Environ Microbiol. 2005;71(8):4696–702.

    Article  CAS  Google Scholar 

  • Melino VJ, Soole KL, Ford CM. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol. 2009;9(145):1–14.

    Google Scholar 

  • Mira de Orduña R. Climate change associated effects on grape and wine quality and production. Food Res Int. 2010;43(7):1844–55.

    Article  Google Scholar 

  • Mira de Orduña R, Liu S-Q, Patchett ML, Pilone G. Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria. FEMS Microbiol Lett. 2000;183(1):31–5.

    Article  Google Scholar 

  • Molitor D, Caffarra A, Sinigoj P, Pertot I, Hoffmann L, Junk J. Late frost damage risk for viticulture under future climate conditions: a case study for the Luxembourgish winegrowing region. Aust J Grape Wine Res. 2014;20(1):160–8.

    Article  Google Scholar 

  • Moriondo M, Jones GV, Bois B, Dibari C, Ferrise R, Trombi G, et al. Projected shifts of wine regions in response to climate change. Clim Change. 2013;119(3-4):825–39.

    Article  Google Scholar 

  • Mozell MR, Thach L. The impact of climate change on the global wine industry: challenges and solutions. Wine Econ Policy. 2014;3:81–9. doi:10.1016/j.wep.2014.08.001.

    Article  Google Scholar 

  • OIV. International code of oenological practices. Paris: OIV; 2014.

    Google Scholar 

  • OIV. Resolution Viti-Oeno 1/2005: code of sound vitivinicultural practices in order to minimise levels of ochratoxin A in vine-based products. 2005. p. 1–5.

    Google Scholar 

  • Olesen JE, Bindi M. Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron. 2002;16(4):239–62.

    Article  Google Scholar 

  • Oliveira CM, Ferreira ACS, De Freitas V, Silva AMS. Oxidation mechanisms occurring in wines. Food Res Int. 2011;44(5):1115–26.

    Article  CAS  Google Scholar 

  • Pastorello EA, Farioli L, Pravettoni V, Ortolani C, Fortunato D, Giuffrida MG, et al. Identification of grape and wine allergens as an endochitinase 4, a lipid-transfer protein, and a thaumatin. J Allergy Clin Immunol. 2003;111(2):350–9.

    Article  CAS  Google Scholar 

  • Pesticide Action Network Europe. Message in a bottle. London: Pesticide Action Network Europe; 2008. p. 1–10.

    Google Scholar 

  • Peynaud E. Knowing and making wine. New York, NY: Wiley; 1984.

    Google Scholar 

  • Pocock KF, Hayasaka Y, McCarthy MG, Waters EJ. Thaumatin-like proteins and Chitinases, the haze-forming proteins of wine, accumulate during ripening of grape (Vitis vinifera) berries and drought stress does not affect the final levels per berry at maturity. J Agric Food Chem. 2000;48(5):1637–43.

    Article  CAS  Google Scholar 

  • Pocock KF, Salazar FN, Waters EJ. The effect of bentonite fining at different stages of white winemaking on protein stability. Aust J Grape Wine Res. 2011;17(2):280–4.

    Article  CAS  Google Scholar 

  • Poling EB. Spring cold injury to winegrapes and protection strategies and methods. HortScience. 2008;43(6):1652–62.

    Google Scholar 

  • Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D. Handbook of enology: the chemistry of wine stabilization and treatments, vol. 2. 2nd ed. New York, NY: John Wiley & Sons; 2006.

    Book  Google Scholar 

  • Ruediger GA, Pardon KH, Sas AN, Godden PW, Pollnitz AP. Removal of pesticides from red and white wine by the use of fining and filter agents. Aust J Grape Wine Res. 2004;10(1):8–16.

    Article  CAS  Google Scholar 

  • Sadras VO, Petrie PR, Moran MA. Effects of elevated temperature in grapevine. II juice pH, titratable acidity and wine sensory attributes. Aust J Grape Wine Res. 2013;19(1):107–15.

    Article  CAS  Google Scholar 

  • Santos J, Malheiro A, Pinto J, Jones G. Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Clim Res. 2012;51(1):89–103.

    Article  Google Scholar 

  • Scarlett N, Needs S, Downey MO. Assessing vineyard viability after bushfire. Aust New Zeal Grapegrow Winemak. 2011;564:21–5.

    Google Scholar 

  • Schmidtke LM, Blackman JW, Agboola SO. Production technologies for reduced alcoholic wines. J Food Sci. 2012;77(1):R25–41.

    Article  CAS  Google Scholar 

  • Schultz HR, Jones GV. Climate induced historic and future changes in viticulture. J Wine Res. 2010;21(23):137–45.

    Article  Google Scholar 

  • Seguin B, de Cortazar IG. Climate warming: consequences for viticulture and the notion of “terroirs” in Europe. Acta Hortic. 2005;689:61–71.

    Article  Google Scholar 

  • Sen K, Cabaroglu T, Yilmaz H. The influence of fining agents on the removal of some pesticides from white wine of Vitis vinifera L. cv. Emir. Food Chem Toxicol. 2012;50(11):3990–5.

    Article  CAS  Google Scholar 

  • Shephard GS, Fabiani A, Stockenström S, Mshicileli N, Sewram V. Quantitation of ochratoxin A in South African wines. J Agric Food Chem. 2003;51(4):1102–6.

    Article  CAS  Google Scholar 

  • Shetty PH, Jespersen L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci Technol. 2006;17(2):48–55.

    Article  CAS  Google Scholar 

  • Singleton VL. Oxygen with phenols and related reactions in musts, wines, and model systems: observations and practical implications. Am J Enol Vitic. 1987;38(1):69–77.

    CAS  Google Scholar 

  • Steel CC, Greer DH. Effect of climate on vine and bunch characteristics: bunch rot disease susceptibility. Acta Hortic. 2008;785:253–62.

    Article  Google Scholar 

  • Steel CC, Blackman JW, Schmidtke LM. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. J Agric Food Chem. 2013;61(22):5189–206.

    Article  CAS  Google Scholar 

  • Su J, Wang T, Wang Y, Li Y-Y, Li H. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry. Appl Microbiol Biotechnol. 2014;98(6):2395–413.

    Article  CAS  Google Scholar 

  • Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry. 2009;70(11-12):1329–44.

    Article  CAS  Google Scholar 

  • Tariba B. Metals in wine-impact on wine quality and health outcomes. Biol Trace Elem Res. 2011;144(1-3):143–56.

    Article  CAS  Google Scholar 

  • Tilloy V, Ortiz-Julien A, Dequin S. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol. 2014;80(8):2623–32.

    Article  Google Scholar 

  • Vaquero-Fernández L, Sanz-Asensio J, Fernández-Zurbano P, López-Alonso M, Martínez-Soria M-T. Determination of fungicide pyrimethanil in grapes, must, fermenting must and wine. J Sci Food Agric. 2013;93(8):1960–6.

    Article  Google Scholar 

  • Varela C, Kutyna DR, Solomon MR, Black CA, Borneman A, Henschke PA, et al. Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts. Appl Environ Microbiol. 2012;78(17):6068–77.

    Article  CAS  Google Scholar 

  • Varga J, Kozakiewicz Z. Ochratoxin A in grapes and grape-derived products. Trends Food Sci Technol. 2006;17(2):72–81.

    Article  CAS  Google Scholar 

  • Vassilopoulou E, Karathanos A, Siragakis G, Giavi S, Sinaniotis A, Douladiris N, et al. Risk of allergic reactions to wine, in milk, egg and fish-allergic patients. Clin Transl Allergy. 2011;1(1):10.

    Article  CAS  Google Scholar 

  • Waters EJ, Alexander G, Muhlack R, Pocock KF, Colby C, O’Neill BK, et al. Preventing protein haze in bottled white wine. Aust J Grape Wine Res. 2005;11(2):215–25.

    Article  CAS  Google Scholar 

  • White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci. 2006;103(30):11217–22.

    Article  CAS  Google Scholar 

  • World Health Organization. Global strategy to reduce the harmful use of alcohol. Geneva: WHO Press; 2010. p. 1–44.

    Google Scholar 

  • World Health Organization. Global status report on alcohol and health 2014. Geneva: WHO Press; 2014. p. 1–392.

    Google Scholar 

  • Zimmermann HW, Rossi EA, Wick E. Alcohol losses from entrainment in carbon dioxide evolved during fermentation. Am J Enol Vitic. 1964;15(2):63–8.

    CAS  Google Scholar 

  • Zoecklein BW, Fugelsang KC, Gump BH, Nury FS. Sulfur dioxide and ascorbic acid. In: Zoecklein BW, editor. Wine analysis and production. New York, NY: Springer; 1995. p. 178–91.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Marangon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marangon, M., Nesbitt, A., Milanowski, T. (2016). Global Climate Change and Wine Safety. In: Moreno-Arribas, M., Bartolomé Suáldea, B. (eds) Wine Safety, Consumer Preference, and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-319-24514-0_5

Download citation

Publish with us

Policies and ethics