Skip to main content

Genetic Improvement and Genetically Modified Microorganisms

  • Chapter
  • First Online:
Wine Safety, Consumer Preference, and Human Health

Abstract

Nowadays, any reflection about wine preferences and the impact of this important constituent of the Mediterranean diet on human health must take into account the current production context, which has extremely evolved during the last few decades. The number of technological advances with potential or hypothetical impact on wine quality as a whole is extremely diverse, and almost any novelty, agronomical, technological, or microbiological, raises arguments involving not only quality and safety considerations but also trade and ideological ones. Although only marginally affected, the winemaking industry has not totally escaped some controversy concerning the global debate on genetic engineering as a tool to improve yield and quality in the agro-food industry. In this chapter we focus on all methodologies historically developed for the genetic improvement of starter wine microorganisms, including not only the highly debated GMO techniques but a number of alternative genetic tools. These non-GMO alternatives often offer great technical advantages while avoiding the most controversial sides associated to genetic improvement. Indeed, some of them are actually undergoing an authentic revival. Both the basic principles behind these techniques and the improvement purposes currently pursued are treated in different sections. For the sake of brevity, and despite many initial advances in this field were fuelled by research on laboratory yeast strains, examples detailed in this chapter emphasise on research involving authentic winemaking yeast and bacterial strains or its direct derivatives. Marketing and regulatory considerations are extremely relevant in this field and are also discussed in the context of the current regulatory framework, trying to identify the most probable lines of development of these technologies in the near future, and their potential to reach the real wine market in the short or mid-term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertin W, Miot-Sertier C, Bely M, Marullo P, Coulon J, Moine V, Colonna-Ceccaldi B, Masneuf Pomarède I. Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must. Int J Food Microbiol. 2014;178:87–97.

    Article  CAS  Google Scholar 

  • Antunovics Z, Irinyi L, Sipiczki M. Combined application of methods to taxonomic identification of Saccharomyces strains in fermenting botrytized grape must. J Appl Microbiol. 2005;98:971–9.

    Article  CAS  Google Scholar 

  • Assad-García JS, Bonnin-Jusserand M, Garmyn D, Guzzo J, Alexandre H, Grandvalet C. An improved protocol for electroporation of Oenococcus oeni ATCC BAA‐1163 using ethanol as immediate membrane fluidizing agent. Lett Appl Microbiol. 2008;47:333–8.

    Article  CAS  Google Scholar 

  • Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of alcoholic beverages. Lancet Oncol. 2007;8:292–3.

    Article  Google Scholar 

  • Bachmann H, Pronk JT, Kleerebezem M, Teusink B. Evolutionary engineering to enhance starter culture performance in food fermentations. Curr Opin Biotechnol. 2015;32:1–7.

    Article  CAS  Google Scholar 

  • Bartowsky EJ. Oenococcus oeni and malolactic fermentation – moving into the molecular arena. Aust J Grape Wine Res. 2005;11:174–87.

    Article  CAS  Google Scholar 

  • Bellon J, Eglinton JM, Siebert TE, Pollnitz AP, Rose L, de Barros Lopes M, Chambers PJ. Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines. Appl Microbiol Biotechnol. 2011;91:603–12.

    Article  CAS  Google Scholar 

  • Bellon J, Schmid F, Capone DL, Dunn BL, Chambers PJ. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae. PLoS One. 2013;8:e62053.

    Article  CAS  Google Scholar 

  • Beltramo C, Oraby M, Bourel G, Garmyn D, Guzzo J. A new vector, pGID052, for genetic transfer in Oenococcus oeni. FEMS Microbiol Lett. 2004;236:53–60.

    CAS  Google Scholar 

  • Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol. 2008;122:312–20.

    Article  CAS  Google Scholar 

  • Benítez T, Del Castillo L, Aguilera A, Conde J, Cerdá-Olmedo E. Selection of wine yeasts for growth and fermentation in the presence of ethanol and sucrose. Appl Environ Microbiol. 1983;45:1429–36.

    Google Scholar 

  • Betteridge T, Merlino J, Natoli J, Cheong EY-L, Gottlieb T, Stokes HW. Plasmids and bacterial strains mediating multidrug-resistant hospital-acquired infections are coresidents of the hospital environment. Microb Drug Resist. 2013;19:104–9.

    Article  CAS  Google Scholar 

  • Boone C, Sdicu AM, Wagner J, Degré R, Sanchez C, Bussey H. Integration of the yeast K1 killer toxin gene into the genome of marked wine yeasts and its effect on vinification. Am J Enol Vitic. 1990;41:37–42.

    CAS  Google Scholar 

  • Borneman A, Forgan AH, Pretorius IS, Chambers PJ. Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res. 2008;8:1185–95.

    Article  CAS  Google Scholar 

  • Borneman A, Schmidt SA, Pretorius IS. At the cutting-edge of grape and wine biotechnology. Trends Genet. 2013;29:263–71.

    Article  CAS  Google Scholar 

  • Brown SL, Stockdale VJ, Pettolino F, Pocock KF, de Barros Lopes M, Williams PJ, Bacic A, Fincher GB, Høj PB, Waters EJ. Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w. Appl Microbiol Biotechnol. 2007;73:1363–76.

    Article  CAS  Google Scholar 

  • Bussereau F, Mallet L, Gaillon L, Jacquet M. A 12.8 kb segment, on the right arm of chromosome II from Saccharomyces cerevisiae including part of the DUR1,2 gene, contains five putative new genes. Yeast. 1993;9:797–806.

    Article  CAS  Google Scholar 

  • Cadière A, Camarasa C, Dequin S. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab Eng. 2011;13:263–71.

    Article  CAS  Google Scholar 

  • Cambon B, Monteil V, Remize F, Camarasa C, Dequin S. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol. 2006;72:4688–94.

    Article  CAS  Google Scholar 

  • Caridi A. Enological functions of parietal yeast mannoproteins. Antonie Van Leeuwenhoek. 2006;89:417–22.

    Article  Google Scholar 

  • Cebollero E, Gonzalez R. Comparison of two alternative dominant selectable markers for wine yeast transformation. Appl Environ Microbiol. 2004;70:7018–23.

    Article  CAS  Google Scholar 

  • Cebollero E, Gonzalez R. Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines. Appl Environ Microbiol. 2006;72:4121–7.

    Article  CAS  Google Scholar 

  • Cebollero E, Carrascosa AV, Gonzalez R. Evidence for yeast autophagy during simulation of sparkling wine aging: a reappraisal of the mechanism of yeast autolysis in wine. Biotechnol Prog. 2005;21:614–6.

    Article  CAS  Google Scholar 

  • Chambers PJ, Pretorius IS. Fermenting knowledge: the history of winemaking, science and yeast research. EMBO Rep. 2010;11:914–20.

    Article  CAS  Google Scholar 

  • Ciani M, Comitini F. Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann Microbiol. 2011;61:25–32.

    Article  Google Scholar 

  • Ciani M, Ferraro L. Enhanced glycerol content in wines made with immobilized Candida stellata cells. Appl Environ Microbiol. 1996;62:128–32.

    CAS  Google Scholar 

  • Cohen SN, Chang AC, Boyer HW, Helling RB. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A. 1973;70:3240–4.

    Article  CAS  Google Scholar 

  • Colagrande O, Silva A, Fumi MD. Recent applications of biotechnology in wine production. Biotechnol Prog. 1994;10(1):2–18.

    Article  CAS  Google Scholar 

  • Cordente AG, Cordero-Bueso G, Pretorius IS, Curtin CD. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res. 2013;13:62–73.

    Article  CAS  Google Scholar 

  • Cordente AG, Heinrich A, Pretorius IS, Swiegers JH. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res. 2009;9:446–59.

    Article  CAS  Google Scholar 

  • Coulon J, Husnik JI, Inglis DL, van der Merwe GK, Lonvaud A, Erasmus DJ, van Vuuren HJ. Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am J Enol Vitic. 2006;57:113–24.

    CAS  Google Scholar 

  • Curran BPG, Bugeja VC. Protoplast fusion in Saccharomyces cerevisiae. In: Methods in Molecular Biology. V. 53. Yeast protocols. IH Evands (ed). New Jersey: Humana Press; 1996. p. 45–9.

    Google Scholar 

  • Dahabieh MS, Husnik JI, van Vuuren HJ. Functional expression of the DUR3 gene in a wine yeast strain to minimize ethyl carbamate in Chardonnay wine. Am J Enol Vitic. 2009;60:537–41.

    CAS  Google Scholar 

  • Damon C, Vallon L, Zimmermann S, Haider MZ, Galeote V, Dequin S, Luis P, Fraissinet-Tachet L, Marmeisse R. A novel fungal family of oligopeptide transporters identified by functional metatranscriptomics of soil eukaryotes. ISME J. 2011;5:1871–80.

    Article  CAS  Google Scholar 

  • Demuyter C, Lollier M, Legras JL, Le Jeune C. Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery. J Appl Microbiol. 2004;97:1140–8.

    Article  CAS  Google Scholar 

  • Dicks LMT. Transformation of Leuconostoc oenos by electroporation. Biotechnol Tech. 1994;8:901–4.

    Article  CAS  Google Scholar 

  • Domizio P, Liu Y, Bisson LF, Barile D. Use of non-Saccharomyces wine yeasts as novel sources of mannoproteins in wine. Food Microbiol. 2014;43:5–15.

    Article  CAS  Google Scholar 

  • Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev. 2007;71:282–94.

    Article  CAS  Google Scholar 

  • Dufour M, Zimmer A, Thibon C, Marullo P. Enhancement of volatile thiol release of Saccharomyces cerevisiae strains using molecular breeding. Appl Microbiol Biotechnol. 2013;97:5893–905.

    Article  CAS  Google Scholar 

  • Ehsani M, Fernández MR, Biosca JA, Julien A, Dequin S. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:3196–205.

    Article  CAS  Google Scholar 

  • Eom H-J, Cho SK, Park MS, Ji GE, Han NS. Characterization of Leuconostoc citreum plasmid pCB18 and development of broad host range shuttle vector for lactic acid bacteria. Biotechnol Bioproc Eng. 2010;15:946–52.

    Article  CAS  Google Scholar 

  • Eom HJ, Moon JS, Cho SK, Kim JH, Han NS. Construction of theta-type shuttle vector for Leuconostoc and other lactic acid bacteria using pCB42 isolated from kimchi. Plasmid. 2012;67:35–43.

    Article  CAS  Google Scholar 

  • Eschenbruch R, Cresswell KJ, Fisher BM, Thornton RJ. Selective hybridisation of pure culture wine yeasts. Eur J Appl Microbiol Biotechnol. 1982;14:155–8.

    Article  Google Scholar 

  • Favier M, Bilhère E, Lonvaud-Funel A, Moine V, Lucas PM. Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine. PLoS One. 2012;7:e49082.

    Article  CAS  Google Scholar 

  • Fernández-González M, Úbeda JF, Cordero-Otero RR, Thanvanthri Gururajan V, Briones AI. Engineering of an oenological Saccharomyces cerevisiae strain with pectinolytic activity and its effect on wine. Int J Food Microbiol. 2005;102:173–83.

    Article  CAS  Google Scholar 

  • Francis JC, Hansche PE. Directed evolution of metabolic pathways in microbial populations. I. Modification of the acid phosphatase pH optimum in S. cerevisiae. Genetics. 1972;70:59–73.

    CAS  Google Scholar 

  • Francis JC, Hansche PE. Directed evolution of metabolic pathways in microbial populations II. A repeatable adaptation in Saccharomyces cerevisiae. Genetics. 1973;74:259–65.

    CAS  Google Scholar 

  • Gamero A, Wesselink W, de Jong C. Comparison of the sensitivity of different aroma extraction techniques in combination with gas chromatography-mass spectrometry to detect minor aroma compounds in wine. J Chromatogr A. 2013;1272:1–7.

    Article  CAS  Google Scholar 

  • Ganga MA, Piñaga F, Vallés S, Ramón D, Querol A. Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int J Food Microbiol. 1999;47:171–8.

    Article  CAS  Google Scholar 

  • Gibson B, Liti G. Saccharomyces pastorianus: genomic insights inspiring innovation for industry. Yeast. 2015;32(1):17–27.

    CAS  Google Scholar 

  • Gietz D, St Jean A, Woods RA, Schiestl RH. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992;20:1425.

    Article  CAS  Google Scholar 

  • Giovani G, Rosi I, Bertuccioli M. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation. Int J Food Microbiol. 2012;160:113–8.

    Article  CAS  Google Scholar 

  • Giraffa G, Chanishvili N, Widyastuti Y. Importance of lactobacilli in food and feed biotechnology. Res Microbiol. 2010;161:480–7.

    Article  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG. Life with 6000 Genes. Science. 1996;274:546–67.

    Article  CAS  Google Scholar 

  • Gonzalez R, Martinez-Rodriguez AJ, Carrascosa AV. Yeast autolytic mutants potentially useful for sparkling wine production. Int J Food Microbiol. 2003;84:21–6.

    Article  CAS  Google Scholar 

  • Gonzalez R, Quirós M, Morales P. Yeast respiration of sugars by non-Saccharomyces yeast species: a promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci Tech. 2013;29:55–61.

    Article  CAS  Google Scholar 

  • Gonzalez-Ramos D, Gonzalez R. Genetic determinants of the release of mannoproteins of enological interest by Saccharomyces cerevisiae. J Agric Food Chem. 2006;54:9411–6.

    Article  CAS  Google Scholar 

  • Gonzalez-Ramos D, Cebollero E, Gonzalez R. A recombinant Saccharomyces cerevisiae strain overproducing mannoproteins stabilizes wine against protein haze. Appl Environ Microbiol. 2008;74:5533–40.

    Article  CAS  Google Scholar 

  • Gonzalez-Ramos D, Muñoz A, Ortiz-Julien A, Palacios A, Heras JM, Gonzalez R. A Saccharomyces cerevisiae wine yeast strain overproducing mannoproteins selected through classical genetic methods. J Int Sci Vigne Vin. 2010;44:243–9.

    CAS  Google Scholar 

  • Gonzalez-Ramos D, Quirós M, Gonzalez R. Three different targets for the genetic modification of wine yeast strains resulting in improved effectiveness of bentonite fining. J Agric Food Chem. 2009;57:8373–8.

    Article  CAS  Google Scholar 

  • González SS, Barrio E, Gafner J, Querol A. Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res. 2006;6:1221–34.

    Article  CAS  Google Scholar 

  • González-Candelas L, Cortell A, Ramón D. Construction of a recombinant wine yeast strain expressing a fungal pectate lyase gene. FEMS Microbiol Lett. 1995;126(3):263–9.

    Article  Google Scholar 

  • González-Candelas L, Gil JV, Lamuela-Raventós RM, Ramón D. The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine. Int J Food Microbiol. 2000;59:179–83.

    Article  Google Scholar 

  • Govender P, Bester M, Bauer FF. FLO gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol. 2010;86:931–45.

    Article  CAS  Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF. Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol. 2008;74:6041–52.

    Article  CAS  Google Scholar 

  • Govender P, Kroppenstedt S, Bauer FF. Novel wine-mediated FLO11 flocculation phenotype of commercial Saccharomyces cerevisiae wine yeast strains with modified FLO gene expression. FEMS Microbiol Lett. 2011;317:117–26.

    Article  CAS  Google Scholar 

  • Guadalupe Z, Ayestarán B. Effect of commercial mannoprotein addition on polysaccharide, polyphenolic, and color composition in red wines. J Agric Food Chem. 2008;56:9022–9.

    Article  CAS  Google Scholar 

  • Haber JE. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics. 2012;191:33–64.

    Article  CAS  Google Scholar 

  • Herraiz T, Reglero G, Herraiz M, Martin-Alvarez PJ, Cabezudo MD. The influence of the yeast and type of culture on the volatile composition of wines fermented without sulfur dioxide. Am J Enol Vitic. 1990;41:313–8.

    CAS  Google Scholar 

  • Herrero O, Ramón D, Orejas M. Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine. Metab Eng. 2008;10:78–86.

    Article  CAS  Google Scholar 

  • Jeandet P, Bessis R, Maume BF. Effect of enological practices on the resveratrol isomer content of wine. J Agric Food Chem. 1995;43:316–9.

    Article  CAS  Google Scholar 

  • Kishimoto M. Fermentation characteristics of hybrids between the cryophilic wine yeast Saccharomyces bayanus and the mesophilic wine yeast Saccharomyces cerevisiae. J Ferment Bioeng. 1994;77:432–5.

    Article  CAS  Google Scholar 

  • Klis FM, Boorsma A, De Groot PWJ. Cell wall construction in Saccharomyces cerevisiae. Yeast. 2006;23:185–202.

    Article  CAS  Google Scholar 

  • Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P. High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol. 2007;73:1864–72.

    Article  CAS  Google Scholar 

  • Laing E, Pretorius IS. Co-expression of an Erwinia chrysanthemi pectate lyase-encoding gene (pelE) and an E. carotovora polygalacturonase-encoding gene (peh1) in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1993;39:181–8.

    CAS  Google Scholar 

  • Lambrechts MG, Pretorius IS. Yeast and its importance to wine aroma. S Afr J Enol Vitic. 2000; 97–129.

    Google Scholar 

  • Le Jeune C, Lollier M, Demuyter C, Erny C, Legras J-L, Aigle M, Masneuf-Pomarède I. Characterization of natural hybrids of Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum. FEMS Yeast Res. 2007;7:540–9.

    Article  CAS  Google Scholar 

  • Lilly M, Lambrechts MG, Pretorius IS. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol. 2000;66:744–53.

    Article  CAS  Google Scholar 

  • Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ. Population genomics of domestic and wild yeasts. Nature. 2009;458:337–41.

    Article  CAS  Google Scholar 

  • Lopandic K, Gangl H, Wallner E, Tscheik G, Leitner G, Querol A, Borth N, Breitenbach M, Prillinger H, Tiefenbrunner W. Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Res. 2007;7:953–65.

    Article  CAS  Google Scholar 

  • Manzanares P, Orejas M, Gil JV, De Graaff LH, Visser J, Ramón D. Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an alpha-L-rhamnosidase of enological interest. Appl Environ Microbiol. 2003;69:7558–62.

    Google Scholar 

  • Martini AV, Kurtzman CP. Deoxyribonucleic acid relatedness among species of Saccharomyces sensu lato. Mycologia. 1985;80:241–243.

    Google Scholar 

  • Marullo P, Mansour C, Dufour M, Albertin W, Sicard D, Bely M, Dubourdieu D. Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. FEMS Yeast Res. 2009;9:1148–60.

    Article  CAS  Google Scholar 

  • Marullo P, Yvert G, Bely M, Aigle M, Dubourdieu D. Efficient use of DNA molecular markers to construct industrial yeast strains. FEMS Yeast Res. 2007;7:1295–306.

    Article  CAS  Google Scholar 

  • Masneuf-Pomarède I, Hansen J, Groth C, Piskur J, Dubourdieu D. New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Appl Environ Microbiol. 1998;64:3887–92.

    Google Scholar 

  • McBryde C, Gardner JM, de Barros Lopes M, Jiranek V. Generation of novel wine yeast strains by adaptive evolution. Am J Enol Vitic. 2006;57:423–30.

    CAS  Google Scholar 

  • Mira de Orduña R. Climate change associated effects on grape and wine quality and production. Food Res Int. 2010;43:1844–55.

    Article  CAS  Google Scholar 

  • Morales P, Rojas V, Quirós M, Gonzalez R. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl Microbiol Biotechnol. 2015;99:3993–4003.

    Article  CAS  Google Scholar 

  • Naumov GI. Saccharomyces bayanus var. uvarum comb, nov., a new variety established by genetic analysis. J Gen Microbiol. 2000;69:338–42.

    CAS  Google Scholar 

  • Nielsen J, Larsson C, van Maris A, Pronk J. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol. 2013;24:398–404.

    Article  CAS  Google Scholar 

  • Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras J-L, Wincker P, Casaregola S, Dequin S. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A. 2009;106:16333–8.

    Article  CAS  Google Scholar 

  • Novo M, Gonzalez R, Bertran E, Martínez M, Yuste M, Morales P. Improved fermentation kinetics by wine yeast strains evolved under ethanol stress. LWT Food Sci Technol. 2014;58:166–72.

    Article  CAS  Google Scholar 

  • Novo M, Quirós M, Morales P, Gonzalez R. Wine Technology. In: Handbook of fruits and fruit processing. 2nd ed. Nirmal Sinha, Josef Barta, M Pilar Cano, Jiwan S. Sidhu and James Wu (ed.) John Wiley & Sons; 2012; pp 806–862.

    Google Scholar 

  • Nunez YP, Carrascosa AV, Gonzalez R, Polo MC, Martínez-Rodríguez AJ. Effect of accelerated autolysis of yeast on the composition and foaming properties of sparkling wines elaborated by a champenoise method. J Agric Food Chem. 2005;53:7232–7.

    Article  CAS  Google Scholar 

  • Núñez YP, Carrascosa AV, Gonzalez R, Polo MC, Martínez-Rodríguez A. Isolation and characterization of a thermally extracted yeast cell wall fraction potentially useful for improving the foaming properties of sparkling wines. J Agric Food Chem. 2006;54:7898–903.

    Article  CAS  Google Scholar 

  • Petering JE, Symons MR, Langridge P, Henschke PA. Determination of killer yeast activity in fermenting grape juice by using a marked Saccharomyces wine yeast strain. Appl Environ Microbiol. 1991;57:3232–6.

    CAS  Google Scholar 

  • Pérez Través L, Lopes CA, Barrio E, Querol A. Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking. Int J Food Microbiol. 2012;156:102–11.

    Article  CAS  Google Scholar 

  • Pérez-González JA, Gonzalez R, Querol A, Sendra J, Ramón D. Construction of a recombinant wine yeast strain expressing beta-(1,4)-endoglucanase and its use in microvinification processes. Appl Environ Microbiol. 1993;59:2801–6.

    Google Scholar 

  • Pérez-Ortín JE, Querol A, Puig S, Barrio E. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res. 2002;12:1533–9.

    Article  CAS  Google Scholar 

  • Pfliegler WP, Atanasova L, Karanyicz E, Sipiczki M, Bond U, Druzhinina IS, Sterflinger K, Lopandic K. Generation of new genotypic and phenotypic features in artificial and natural yeast hybrids. Food Technol Biotechnol. 2014;52:46–57.

    CAS  Google Scholar 

  • Phillips R. A short history of wine. Penguin, London. 2001.

    Google Scholar 

  • Pozo-Bayón MÁ, Monagas M, Bartolomé B, Moreno-Arribas MV. Wine features related to safety and consumer health: an integrated perspective. Crit Rev Food Sci Nutr. 2012;52:31–54.

    Article  CAS  Google Scholar 

  • Pretorius IS, Bauer FF. Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol. 2002;20:426–32.

    Article  CAS  Google Scholar 

  • Puig S, Perez-Ortin JE. Optimized method to obtain stable food-safe recombinant wine yeast strains. J Agric Food Chem. 1998.

    Google Scholar 

  • Puig S, Querol A, Perez-Ortin JE. Evaluation of the use of phase-specific gene promoters for the expression of enological enzymes in an industrial wine yeast strain. Biotechnol Lett. 1996;18:887–92.

    Article  CAS  Google Scholar 

  • Querol A, Bond U. The complex and dynamic genomes of industrial yeasts. FEMS Microbiol Lett. 2009;293(1):1–10.

    Article  CAS  Google Scholar 

  • Quirós M, Gonzalez-Ramos D, Tabera L, Gonzalez R. A new methodology to obtain wine yeast strains overproducing mannoproteins. Int J Food Microbiol. 2010;139:9–14.

    Article  CAS  Google Scholar 

  • Quirós M, Rojas V, Gonzalez R, Morales P. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int J Food Microbiol. 2014;181:85–91.

    Article  CAS  Google Scholar 

  • Ramirez M, Perez F, Regodon J. A simple and reliable method for hybridization of homothallic wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol. 1998;64:5039–41.

    CAS  Google Scholar 

  • Ramón D, Gonzalez R. Improvement of wine yeasts by genetic engineering. In: Molecular wine microbiology. AV Carrascosa, R Muñoz y R Gonzalez (ed). pp. 169–190 Amsterdam: Academic Press (Elsevier); 2011.

    Google Scholar 

  • Rantsiou K, Dolci P, Giacosa S, Torchio F, Tofalo R, Torriani S, Suzzi G, Rolle L, Cocolin L. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl Environ Microbiol. 2012;78:1987–94.

    Article  CAS  Google Scholar 

  • Remize F, Andrieu E, Dequin S. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol. 2000;66:3151–9.

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon P, Glories Y, Mauejan A, Dubourdieu D. Traité d'oenologie - Tome 2 - Chimie du vin. Stabilisation et traitements. 6th ed. Dunod. 2012.

    Google Scholar 

  • Rojas V, Gil JV, Piñaga F, Manzanares P. Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int J Food Microbiol. 2003;86:181–8.

    Article  CAS  Google Scholar 

  • Romano P, Fiore C, Paraggio M, Caruso M, Capece A. Function of yeast species and strains in wine flavour. Int J Food Microbiol. 2003;86:169–80.

    Article  CAS  Google Scholar 

  • Romano P, Soli MG, Suzzi G, Grazia L, Zambonelli C. Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appl Environ Microbiol. 1985;50:1064–7.

    CAS  Google Scholar 

  • Romero-Pérez AI, Lamuela-Raventós RM, Buxaderas S, de la Torre-Boronat MC. Resveratrol and piceid as varietal markers of white wines. J Agric Food Chem. 1996;44:1975–8.

    Article  Google Scholar 

  • Roncoroni M, Santiago M, Hooks DO, Moroney S, Harsch MJ, Lee SA, Richards KD, Nicolau L, Gardner RC. The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiol. 2011;28:926–35.

    Article  CAS  Google Scholar 

  • Rossi F, Rudella A, Marzotto M, Dellaglio F. Vector-free cloning of a bacterial endo-1,4-beta-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie Van Leeuwenhoek. 2001;80:139–47.

    Article  CAS  Google Scholar 

  • Rossignol T, Dulau L, Julien A, Blondin B. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast. 2003;20:1369–85.

    Article  CAS  Google Scholar 

  • Salmon JM, Barre P. Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl Environ Microbiol. 1998;64:3831–7.

    CAS  Google Scholar 

  • Sampermans S, Mortier J, Soares EV. Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol. 2005;98:525–31.

    Article  CAS  Google Scholar 

  • Sánchez-Torres P, González-Candelas L. Expression in a wine yeast strain of the Aspergillus niger abfB gene. FEMS Microbiol Lett. 1996;145:189–94.

    Google Scholar 

  • Sánchez-Torres P, González-Candelas L, Ramón D. Heterologous expression of a Candida molischiana anthocyanin-β-glucosidase in a wine yeast strain. J Agric Food Chem. 1998;46:354–60.

    Article  Google Scholar 

  • Schümann C, Michlmayr H, Eder R, Del Hierro AM, Kulbe KD, Mathiesen G, Nguyen T-H. Heterologous expression of Oenococcus oeni malolactic enzyme in Lactobacillus plantarum for improved malolactic fermentation. AMB Express. 2012;2:19.

    Article  CAS  Google Scholar 

  • Shareck J, Choi Y, Lee B, Miguez CB. Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit Rev Biotechnol. 2004;24:155–208.

    Article  CAS  Google Scholar 

  • Shinohara T, Saito K, Yanagida F, Goto S. Selection and hybridization of wine yeasts for improved winemaking properties: Fermentation rate and aroma productivity. J Ferment Bioeng. 1994;77:428–31.

    Article  CAS  Google Scholar 

  • Siemann EH, Creasy LL. Concentration of the phytoalexin resveratrol in wine. Am J Enol Vitic. 1992;43:49–52.

    CAS  Google Scholar 

  • Snow PG, Gallander JF. Deacidification of white table wines through partial fermentation with Schizosaccharomyces pombe. Am J Enol Vitic. 1979;30:45–8.

    CAS  Google Scholar 

  • Snow R. Genetic improvement of wine yeast. In: Yeast genetics, Springer series in molecular biology. New York, NY: Springer; 1983. p. 439–59.

    Google Scholar 

  • Soares EV. Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol. 2011;110:1–18.

    Article  CAS  Google Scholar 

  • Soden A, Francis IL, Oakey H, Henschke PA. Effects of co‐fermentation with Candida stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine. Aust J Grape Wine Res. 2000;6:21–30.

    Article  CAS  Google Scholar 

  • Spencer JFT, Spencer DM. Rare-mating and cytoduction in Saccharomyces cerevisiae. In: Methods in Molecular Biology. V. 53. Yeast protocols. IH Evands (ed). New Jersey: Humana Press; 1996. p 39–44.

    Google Scholar 

  • Steensels J, Meersman E, Snoek T, Saels V, Verstrepen KJ. Large-scale selection and breeding to generate industrial yeasts with superior aroma production. Appl Environ Microbiol. 2014;80:6965–75.

    Article  CAS  Google Scholar 

  • Styger G, Prior BA, Bauer FF. Wine flavor and aroma. J Ind Microbiol Biotechnol. 2011;38:1145–59.

    Article  CAS  Google Scholar 

  • Sumby KM, Grbin PR, Jiranek V. Implications of new research and technologies for malolactic fermentation in wine. Appl Microbiol Biotechnol. 2014;98:8111–32.

    Article  CAS  Google Scholar 

  • Swiegers JH, Capone DL, Pardon KH, Elsey GM, Sefton MA, Francis IL, Pretorius IS. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast. 2007;24:561–74.

    Article  CAS  Google Scholar 

  • Tabera L, Muñoz R, Gonzalez R. Deletion of BCY1 from the Saccharomyces cerevisiae genome is semidominant and induces autolytic phenotypes suitable for improvement of sparkling wines. Appl Environ Microbiol. 2006;72:2351–8.

    Article  CAS  Google Scholar 

  • Thornton RJ. Selective hybridisation of pure culture wine yeasts. Eur J Appl Microbiol Biotechnol. 1982;14:159–64.

    Article  CAS  Google Scholar 

  • Thornton RJ, Eschenbruch R. Homothallism in wine yeasts. Antonie Van Leeuwenhoek. 1976;42:503–9.

    Article  CAS  Google Scholar 

  • Tilloy V, Ortiz-Julien A, Dequin S. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol. 2014;80:2623–32.

    Article  CAS  Google Scholar 

  • Du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S. Lactobacillus: the next generation of malolactic fermentation starter cultures—an overview. Food Bioprocess Technol. 2011;4:876–906.

    Article  Google Scholar 

  • Turner NJ. Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol. 2003;21:474–8.

    Article  CAS  Google Scholar 

  • Van Rensburg P, Strauss MLA, Lambrechts MG, Cordero Otero RR, Pretorius IS. The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae. J Appl Microbiol. 2007;103:2248–57.

    Article  CAS  Google Scholar 

  • Varela C, Kutyna DR, Solomon MR, Black CA, Borneman A, Henschke PA, Pretorius IS, Chambers PJ. Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts. Appl Environ Microbiol. 2012;78:6068–77.

    Article  CAS  Google Scholar 

  • Verstrepen KJ, Klis FM. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 2006;60:5–15.

    Article  CAS  Google Scholar 

  • Verstrepen KJ, Derdelnckx G, Delvaux FR, Winderickx J, Thevelein JM, Bauer FF, Pretorius IS. Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem. 2001;59:69–76.

    Google Scholar 

  • Verstrepen KJ, Van Laere SDM, Vanderhaegen BMP, Derdelinckx G, Dufour J-P, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol. 2003;69:5228–37.

    Article  CAS  Google Scholar 

  • Viana F, Belloch C, Vallés S, Manzanares P. Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: impact on 2-phenylethyl acetate production. Int J Food Microbiol. 2011;151:235–40.

    Article  CAS  Google Scholar 

  • Viana F, Gil JV, Genovés S, Vallés S, Manzanares P. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol. 2008;25:778–85.

    Article  CAS  Google Scholar 

  • Vilanova M, Blanco P, Cortés S, Castro M, Villa TG, Sieiro C. Use of a PGU1 recombinant Saccharomyces cerevisiae strain in oenological fermentations. J Appl Microbiol. 2000;89:876–83.

    Article  CAS  Google Scholar 

  • Wang D, Wang Z, Liu N, He X, Zhang B. Genetic modification of industrial yeast strains to obtain controllable NewFlo flocculation property and lower diacetyl production. Biotechnol Lett. 2008;30:2013–8.

    Article  CAS  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Murakami J, Koshino S. Breeding of flocculent industrial Saccharomyces cerevisiae strains by introducing the flocculation gene FLO1. Agric Biol Chem. 1991;55:1547–52.

    Article  CAS  Google Scholar 

  • Waters EJ. A Saccharomyces mannoprotein that protects wine from protein haze. Carbohydr Polym. 1994.

    Google Scholar 

  • Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–8.

    Article  CAS  Google Scholar 

  • Whitaker JR. New and future uses of enzymes in food processing. Food Biotechnol. 1990;4:669–97.

    Article  CAS  Google Scholar 

  • Zhang J, Wu C, Du G, Chen J. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol Bioproc. 2012;17:283–9.

    Article  CAS  Google Scholar 

  • Zhao X, Du G, Zou H, Fu J, Zhou J, Chen J. Progress in preventing the accumulation of ethyl carbamate in alcoholic beverages. Trends Food Sci Tech. 2013;32:97–107.

    Article  CAS  Google Scholar 

  • Zimmerli B, Schlatter J. Ethyl carbamate: analytical methodology, occurrence, formation, biological activity and risk assessment. Mutat Res. 1991;259:325–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonzalez, R., Tronchoni, J., Quirós, M., Morales, P. (2016). Genetic Improvement and Genetically Modified Microorganisms. In: Moreno-Arribas, M., Bartolomé Suáldea, B. (eds) Wine Safety, Consumer Preference, and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-319-24514-0_4

Download citation

Publish with us

Policies and ethics