Skip to main content

Optical Absorption Spectroscopy at Interfaces

  • Chapter
  • First Online:
Soft Matter at Aqueous Interfaces

Part of the book series: Lecture Notes in Physics ((LNP,volume 917))

Abstract

This chapter summarises the physical principles of optical absorption spectroscopy and its use for the characterisation of surfaces and interfaces. After a brief discussion of the fundamentals of absorption spectroscopy and its relation to quantum mechanics, the chapter discusses the basics of optics at interfaces, focusing on the absorption of light by molecules in the interfacial region. Because of fundamental similarities, the chapter will touch on spectroscopy of both electronic and vibrational transitions, with a strong focus on infrared absorption experiments. There is a brief discussion, with reference to examples, of experiments in internal and external reflection geometry, including a brief discussion of the measurement of spectra on different classes of substrates (metallic vs. transparent).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “polarisation” is ambiguous in this text, because we follow general literature usage. Polarisation can stand for the polarisation of light, as will be extensively used from Sect. 14.3 onward. In this paragraph, dielectric “polarisation” means the induction of an electric field, opposing an external field, in matter. A third meaning of polarisation, which is not used in this chapter, however, in Chap. 2 by C. D. Fenández-Solis et al. is the application of a controlled electrode potential other than the open circuit potential.

  2. 2.

    As a side remark, we note that in general, both χ and \(\varepsilon_{\text{r}}\) are tensorial quantities, which we ignore in these equations for simplicity.

  3. 3.

    Actually, the magnetic field vector is perpendicular to the electric field vector. Therefore, for the p-wave, the magnetic field vector has only a y-component that is different from 0, which is where the name transverse-magnetic originates from.

  4. 4.

    The same phenomenon is referred to in Chap. 12 by J. Daillant as “total external reflection”, because at X-ray wavelengths, the refractive index situation is reversed compared to optical wavelengths, i.e. the medium with lower refractive index here may be the medium with higher refractive index when using X-rays.

References

  1. J.M. Hollas, Modern Spectroscopy, 4th edn. (Wiley, Chichester, 2004)

    Google Scholar 

  2. I.N. Levine, Molecular Spectroscopy (Wiley, New York, 1975)

    Google Scholar 

  3. D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy—An Introduction to Vibrational and Electronic Spectroscopy (Dover, New York, 1978)

    Google Scholar 

  4. G. Gauglitz, T. Vo-Dinh (eds.), Handbook of Spectroscopy (Wiley, Weinheim, 2003)

    Google Scholar 

  5. P.M.A. Sherwood, Vibrational Spectroscopy of Solids (Cambridge University Press, Cambridge, 1972)

    Google Scholar 

  6. M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001)

    Google Scholar 

  7. V.P. Tolstoy, I.V. Chernyshova, V.A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, Hoboken, 2003)

    Book  Google Scholar 

  8. W. Plieth, G.S. Wilson, C. Gutierrez de la Fe, Spectroelectrochemistry: a survey of in situ spectroscopic techniques. Pure Appl. Chem. 70, 1395–1414 (1998)

    Google Scholar 

  9. W. Plieth, G.S. Wilson, C. Gutierrez de la Fe, Erratum. Pure Appl. Chem. 70, 2409–2412 (1998)

    Google Scholar 

  10. D. Marshall, P.R. Rich, Mitochondrial function, in Methods in Enzymology, vol. 456, Studies of Complex I by Fourier Transform Infrared Spectroscopy (Elsevier, Amsterdam, 2009), pp. 53–74

    Google Scholar 

  11. P.R. Rich, M. Iwaki, Methods to probe protein transitions with ATR infrared spectroscopy. Mol. BioSyst. 3, 398–407 (2007)

    Article  Google Scholar 

  12. C. Vigano, J.-M. Ruysschaert, E. Goormaghtigh, Sensor applications of attenuated total reflection infrared spectroscopy. Talanta, 65, 1132–1142 (2005)

    Google Scholar 

  13. K. Ataka, J. Heberle, Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal. Bioanal. Chem. 388, 47–54 (2007)

    Article  Google Scholar 

  14. F. Zaera, Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012)

    Article  Google Scholar 

  15. D.A. Woods, C.D. Bain, Total internal reflection spectroscopy for studying soft matter. Soft Matter 10, 1071–1096 (2014)

    Article  ADS  Google Scholar 

  16. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  17. C.D. Bain, P.R. Greene, Spectroscopy of adsorbed layers. Curr. Opin. Colloid Interface Sci. 6, 313–320 (2001)

    Article  Google Scholar 

  18. A. Barth, Infrared spectroscopy of proteins. Biochim. Biophys. Acta (Bioenergetics) 1767, 1073–1101 (2007)

    Article  Google Scholar 

  19. R.A. Nyquist, Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra (Academic Press, San Diego, 2001)

    Google Scholar 

  20. E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations (Dover Publications, New York, 1955)

    Google Scholar 

  21. Z.-Q. Tian, B. Ren, Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced raman spectroscopy. Annu. Rev. Phys. Chem. 55, 197–229 (2004)

    Article  ADS  Google Scholar 

  22. D.H. Murgida, P. Hildebrandt, Disentangling interfacial redox processes of proteins by SERR spectroscopy. Chem. Soc. Rev. 37, 937–945 (2008)

    Article  Google Scholar 

  23. S.L. Kleinman, R.R. Frontiera, A.-I. Henry, J.A. Dieringer, R.P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013)

    Article  Google Scholar 

  24. E.D. Palik, Handbook of Optical Constants of Solids, vols. 1–4 (Academic Press, San Diego, 1985–1997)

    Google Scholar 

  25. T.N. Stanislavchuk, T.D. Kang, P.D. Rogers, E.C. Standard, R. Basistyy, A.M. Kotelyanskii, G. Nita, T. Zhou, G.L. Carr, M. Kotelyanskii, A.A. Sirenko, Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full mueller-matrix capability. Rev. Sci. Instr. 84, 023901 (2013)

    Google Scholar 

  26. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007)

    Book  Google Scholar 

  27. H. Haug, S.W. Koch, Quantum Theory of Optical and Electronic Properties of Semiconductors, 5th edn. (World Scientific, Singapore, 2009)

    Book  MATH  Google Scholar 

  28. F. Wooten, Optical Properties of Solids (Academic Press, San Diego, 1972)

    Google Scholar 

  29. W. Vogel, D.-G. Welsch, Quantum Optics (Wiley, Weinheim, 2006)

    Book  MATH  Google Scholar 

  30. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)

    MATH  Google Scholar 

  31. M. Olschewski, S. Knop, J.R.G. Lindner, P. Vöhringer, From single hydrogen bonds to extended hydrogen-bond wires: low-dimensional model systems for vibrational spectroscopy of associated liquids. Angew. Chem. Int. Ed. 52, 9634–9654 (2013)

    Article  Google Scholar 

  32. J.E. Bertie, Z. Lan, Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O (l) at 25 °C between 15,000 and 1 cm−1. Appl. Spectrosc. 50, 1047–1057 (1996)

    Article  ADS  Google Scholar 

  33. D.M. Leitner, M. Havenith, M. Gruebele, Biomolecule large-amplitude motion and solvation dynamics: modelling and probes from THz to x-rays. Int. Rev. Phys. Chem. 25, 553–582 (2006)

    Article  Google Scholar 

  34. G. Niehues, M. Heyden, D.A. Schmidt, M. Havenith, Exploring hydrophobicity by THz absorption spectroscopy of solvated amino acids. Faraday Discuss. 150, 193–207 (2011)

    Article  ADS  Google Scholar 

  35. M. Chaplin, Water absorption spectrum. http://www1.lsbu.ac.uk/water/water_vibrational_spectrum.html. Accessed Oct 2014

  36. Labcognition Analytical Software. irAnalyze/RAMalyze. http://www.labcognition.com. Accessed Oct 2014

  37. N.W. Ashcroft, D. Mermin, Solid State Physics (Holt, Rinehart and Winston, Dumfries, 1976)

    MATH  Google Scholar 

  38. R.A. Jishi, M.S. Dresselhaus, G. Dresselhaus, Electron-phonon coupling and the electrical conductivity of fullerene nanotubes. Phys. Rev. B 48, 11385–11389 (1993)

    Article  ADS  Google Scholar 

  39. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (Elsevier Science, Amsterdam, 1999)

    Google Scholar 

  40. J. Lekner, Theory of Reflection of Electromagnetic and Particle Waves (Martinus Nijhoff, Dordrecht, 1987)

    Book  MATH  Google Scholar 

  41. M. Schubert, Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems. Phys. Rev. B 53, 4265–4274 (1996)

    Article  ADS  Google Scholar 

  42. A. Erbe, Reflcalc. http://home.arcor.de/aerbe/en/prog/a/reflcalc.html. Accessed June 2014

  43. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)

    MATH  Google Scholar 

  44. J.L. Volakis, A. Chatterjee, L.C. Kempel, Finite element method for electromagnetics, in IEEE/OUP Series on Electromagnetic Wave Theory (IEEE Press/Oxford University Press, New York/Oxford, 1998)

    Google Scholar 

  45. D. Moss, E. Nabedryk, J. Breton, W. Mäntele, Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Eur. J. Biochem. 187, 565–572 (1990)

    Article  Google Scholar 

  46. J.D. Jackson, Classical Electrodynamics (Wiley, Hoboken, 1998)

    Google Scholar 

  47. W.N. Hansen, Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. J. Opt. Soc. Am. 58, 380–390 (1968)

    Article  ADS  Google Scholar 

  48. D.D. Schlereth, W. Mäntele, Redox-induced conformational changes in myoglobin and hemoglobin: electrochemistry and ultraviolet-visible and fourier transform infrared difference spectroscopy at surface-modified gold electrodes in an ultra-thin-layer spectroelectrochemical cell. Biochemistry 31, 7494–7502 (1992)

    Article  Google Scholar 

  49. M.K. Debe, Optical probes of organic thin films: photons-in and photons-out. Prog. Surf. Sci. 24, 1–282 (1987)

    Article  ADS  Google Scholar 

  50. M. Moskovits, Surface selection rules. J. Chem. Phys. 77, 4408–4416 (1982)

    Article  ADS  Google Scholar 

  51. C. Vericat, M.E. Vela, G. Benitez, P. Carro, R.C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39, 1805–1834 (2010)

    Article  Google Scholar 

  52. E. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat, M.H. Fonticelli, G. Benítez, A.A. Rubert, R.C. Salvarezza, The chemistry of the sulfur gold interface: in search of a unified model. Acc. Chem. Res. 45, 1183–1192 (2012)

    Article  Google Scholar 

  53. F. Schreiber, Self-assembled monolayers: from ‘simple’ model systems to biofunctionalized interfaces. J. Phys.: Condens. Matter 16, R881–R900 (2004)

    ADS  Google Scholar 

  54. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005)

    Article  Google Scholar 

  55. M. Kind, C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: preparation, characterization, and application. Prog. Surf. Sci. 84, 230–278 (2009)

    Article  ADS  Google Scholar 

  56. R.G. Snyder, H.L. Strauss, C.A. Elliger, Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J. Phys. Chem. 86, 5145–5150 (1982)

    Article  Google Scholar 

  57. R.A. Macphail, H.L. Strauss, R.G. Snyder, C.A. Elliger, C-H stretching modes and the structure of normal alkyl chains. 2. Long, all-trans chains. J. Phys. Chem. 88, 334–341 (1984)

    Article  Google Scholar 

  58. D.L. Allara, R.G. Nuzzo, Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir 1, 52–66 (1985)

    Article  Google Scholar 

  59. R.D.B. Fraser, T.P. MacRae, Conformation in Fibrous Proteins and Related Synthetic Polypeptides (Academic Press, New York, 1973)

    Google Scholar 

  60. J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, C. Wöll, Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold. Phys. Chem. Chem. Phys. 12, 4459–4472 (2010)

    Article  Google Scholar 

  61. C. Hogan, R. Del Sole, G. Onida, Optical properties of real surfaces from microscopic calculations of the dielectric function of finite atomic slabs. Phys. Rev. B 68, 035405 (2003)

    Article  ADS  Google Scholar 

  62. M.I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, M. Rohwerder, Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold. Electrochim. Acta 90, 17–26 (2013)

    Article  Google Scholar 

  63. B.E. Hayden, Vibrational spectroscopy of molecules on surfaces, in Reflection Absorption Infrared Spectroscopy (Plenum Press, New York, 1987)

    Google Scholar 

  64. C. Zafiu, G. Trettenhahn, D. Pum, U.B. Sleytr, W. Kautek, Structural control of surface layer proteins at electrified interfaces investigated by in situ Fourier transform infrared spectroscopy. Phys. Chem. Chem. Phys. 13, 13232–13237 (2011)

    Google Scholar 

  65. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Book  MATH  Google Scholar 

  66. T. Buffeteau, B. Desbat, J.M. Turlet, Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis. Appl. Spectrosc. 45, 380–389 (1991)

    Article  ADS  Google Scholar 

  67. L.A. Nafie, D.W. Vidrine, in Fourier transform infrared spectroscopy. Double Modulation Fourier Transform Spectroscopy, vol. 3 (Academic Press, San Diego, 1982), pp. 83–123

    Google Scholar 

  68. K.W. Hipps, G.A. Crosby, Applications of the photoelastic modulator to polarization spectroscopy. J. Phys. Chem. 83, 555–562 (1979)

    Article  Google Scholar 

  69. A. Kerth, A. Erbe, M. Dathe, A. Blume, Infrared reflection absorption spectroscopy of amphipathic model peptides at the air/water interface. Biophys. J. 86, 3750–3758 (2004)

    Article  Google Scholar 

  70. M. Schiek, K. Al-Shamery, M. Kunat, F. Traeger, C. Wöll, Water adsorption on the hydroxylated H-(1 × 1) O-ZnO(0001̄) surface. Phys. Chem. Chem. Phys. 8, 1505–1512 (2006)

    Article  Google Scholar 

  71. E. Amado, A. Kerth, A. Blume, J.R.G. Kressler, Infrared reflection absorption spectroscopy coupled with brewster angle microscopy for studying interactions of amphiphilic triblock copolymers with phospholipid monolayers. Langmuir 24, 10041–10053 (2008)

    Article  Google Scholar 

  72. M. Buchholz, P.G. Weidler, F. Bebensee, A. Nefedov, C. Wöll, Carbon dioxide adsorption on a ZnO(101̄0) substrate studied by infrared reflection absorption spectroscopy. Phys. Chem. Chem. Phys. 16, 1672–1678 (2014)

    Article  Google Scholar 

  73. A. Erbe, A. Kerth, M. Dathe, A. Blume, Interactions of KLA amphipathic model peptides with lipid monolayers. ChemBioChem 10, 2884–2892 (2009)

    Article  Google Scholar 

  74. N.J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, Ossining, 1987)

    Google Scholar 

  75. M. Milosevic, Internal Reflection and Spectroscopy. ATR (Wiley, New York, 2012)

    Book  Google Scholar 

  76. M. Milosevic, On the nature of the evanescent wave. Appl. Spectrosc. 67, 126–131 (2013)

    Article  ADS  Google Scholar 

  77. M.W. Davidson, Florida State University, Molecular expressions. http://micro.magnet.fsu.edu/. Accessed Oct 2014

  78. E. Goormaghtigh, V. Raussens, J.-M. Ruysschaert, Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta (Biomembranes) 1422, 105–185 (1999)

    Article  Google Scholar 

  79. M. Müller, B. Torger, E. Bittrich, E. Kaul, L. Ionov, P. Uhlmann, M. Stamm, In-situ ATR-FTIR for characterization of thin biorelated polymer films. Thin Solid Films 556, 1–8 (2014)

    Article  ADS  Google Scholar 

  80. M. Boncheva, H. Vogel, Formation of stable polypeptide monolayers at interfaces: controlling molecular conformation and orientation. Biophys. J. 73, 1056–1072 (1997)

    Article  ADS  Google Scholar 

  81. M. Liley, T.A. Keller, C. Duschl, H. Vogel, Direct observation of self-assembled monolayers, ion complexation, and protein conformation at the gold/water interface: an FTIR spectroscopic approach. Langmuir 13, 4190–4192 (1997)

    Article  Google Scholar 

  82. Y. Cheng, N. Boden, R.J. Bushby, S. Clarkson, S.D. Evans, P.F. Knowles, A. Marsh, R.E. Miles, Attenuated total reflection fourier transform infrared spectroscopic characterization of fluid lipid bilayers tethered to solid supports. Langmuir 14, 839–844 (1998)

    Article  Google Scholar 

  83. A. Erbe, R.J. Bushby, S.D. Evans, L.J.C. Jeuken, Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy. J. Phys. Chem. B 111, 3515–3524 (2007)

    Article  Google Scholar 

  84. M. Reithmeier, A. Erbe, Dielectric interlayers for increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy. Phys. Chem. Chem. Phys. 12, 14798–14803 (2010)

    Article  Google Scholar 

  85. M. Reithmeier, A. Erbe, Application of thin-film interference coatings in infrared reflection spectroscopy of organic samples in contact with thin metal films. Appl. Opt. 50, C301–C308 (2011)

    Article  Google Scholar 

  86. P. Wenzl, M. Fringeli, J. Goette, U.P. Fringeli, Langmuir 10, 4253–4264 (1994)

    Article  Google Scholar 

  87. S. Nayak, P. Ulrich Biedermann, M. Stratmann, A. Erbe, A mechanistic study of the electrochemical oxygen reduction on the model semiconductor n-Ge(100) by ATR-IR and DFT. Phys. Chem. Chem. Phys. 15, 5771–5781 (2013)

    Article  Google Scholar 

  88. S. Nayak, P.U. Biedermann, M. Stratmann, A. Erbe, In situ infrared spectroscopic investigation of intermediates in the electrochemical oxygen reduction on n-Ge (100) in alkaline perchlorate and chloride electrolyte. Electrochim. Acta 106, 472–482 (2013)

    Article  Google Scholar 

  89. B.J. Messinger, K. Ulrich von Raben, R.K. Chang, P.W. Barber, Local fields at the surface of noble-metal microspheres. Phys. Rev. B 24, 649–657 (1981)

    Google Scholar 

  90. G. Vasan, A. Erbe, Incidence angle dependence of the enhancement factor in attenuated total reflection surface enhanced infrared absorption spectroscopy studied by numerical solution of the vectorial Maxwell equations. Phys. Chem. Chem. Phys. 14, 14702–14709 (2012)

    Article  Google Scholar 

  91. G. Vasan, Y. Chen, A. Erbe, Computation of surface-enhanced infrared absorption spectra of particles at a surface through the finite element method. J. Phys. Chem. C 115, 3025–3033 (2011)

    Article  Google Scholar 

  92. M. Fan, A.G. Brolo, Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability. ChemPhysChem 9, 1899–1907 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft. C. T. thanks the International Max Planck Research School for Surface and Interface Engineering in Advanced Materials (IMPRS-SurMat) for a scholarship. The authors thank Prof. M. Stratmann for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Erbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Erbe, A., Sarfraz, A., Toparli, C., Schwenzfeier, K., Niu, F. (2016). Optical Absorption Spectroscopy at Interfaces. In: Lang, P., Liu, Y. (eds) Soft Matter at Aqueous Interfaces. Lecture Notes in Physics, vol 917. Springer, Cham. https://doi.org/10.1007/978-3-319-24502-7_14

Download citation

Publish with us

Policies and ethics