Skip to main content

Online Linear Optimization for Job Scheduling Under Precedence Constraints

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9355))

Included in the following conference series:

Abstract

We consider an online job scheduling problem on a single machine with precedence constraints under uncertainty. In this problem, for each trial \(t=1,\dots ,T\), the player chooses a total order (permutation) of n fixed jobs satisfying some prefixed precedence constraints. Then, the adversary determines the processing time for each job, 9 and the player incurs as loss the sum of the processing time and the waiting time. The goal of the player is to perform as well as the best fixed total order of jobs in hindsight. We formulate the problem as an online linear optimization problem over the permutahedron (the convex hull of permutation vectors) with specific linear constraints, in which the underlying decision space is written with exponentially many linear constraints. We propose a polynomial time online linear optimization algorithm; it predicts almost as well as the state-of-the-art offline approximation algorithms do in hindsight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ailon, N.: Improved bounds for online learning over the permutahedron and other ranking polytopes. In: Proceedings of 17th International Conference on Artificial Intelligence and Statistics (AISTAT 2014), pp. 29–37 (2014)

    Google Scholar 

  2. Ambühl, C., Mastrolilli, M., Mutsanas, N., Svensson, O.: On the Approximability of Single-Machine Scheduling with Precedence Constraints Christoph Ambühl. Mathematics of Operations Research 36(4), 653–669 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambühl, C., Mastrolilli, M., Swensson, O.: Inapproximability results for sparsest cut, optimal linear arrangement, and precedence constrained scheduling. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 329–337 (2007)

    Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  MATH  Google Scholar 

  5. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press (2006)

    Google Scholar 

  6. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of weighted completion times on a single machine. Discrete Applied Mathematics 98(1–2), 29–38 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chudak, F.A., Hochbaum, D.S.: A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine. Operations Research Letters 25, 199–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Clifford, S.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)

    Google Scholar 

  9. Correa, J.R., Schulz, A.S.: Single-machine scheduling with precedence constraints. Mathematics of Operations Research 30(4), 1005–1021 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Even-Dar, E., Kleinberg, R., Mannor, S., Mansour, Y.: Online learning for global cost functions. In: Proceedings of the 22nd Conference on Learning Theory (COLT 2009) (2009)

    Google Scholar 

  11. Freund, Y., Schapire, R.E.: Large Margin Classification Using the Perceptron Algorithm. Machine Learning 37(3), 277–299 (1999)

    Article  MATH  Google Scholar 

  12. Fujishige, S.: Submodular functions and optimization, 2nd edn. Elsevier Science (2005)

    Google Scholar 

  13. Fujita, T., Hatano, K., Takimoto, E.: Combinatorial online prediction via metarounding. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds.) ALT 2013. LNCS, vol. 8139, pp. 68–82. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms. Mathematics of Operations Research 22(3), 513–544 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Helmbold, D.P., Warmuth, M.K.: Learning Permutations with Exponential Weights. Journal of Machine Learning Research 10, 1705–1736 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Kakade, S., Kalai, A.T., Ligett, L.: Playing games with approximation algorithms. SIAM Journal on Computing 39(3), 1018–1106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. Journal of Computer and System Sciences 71(3), 291–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lawler, E.L.: On Sequencing jobs to minimize weighted completion time subject to precedence constraints. Annals of Discrete Mathematics 2(2), 75–90 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lenstra, J.K., Kan, A.H.G.R.: Complexity of scheduling under precedence constraints. Operations Research 26, 22–35 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lugosi, G., Papaspiliopoulos, O., Stoltz, G.: Online multi-task learning with hard constraints. In: Proceedings of the 22nd Conference on Learning Theory (COLT 2009) (2009)

    Google Scholar 

  21. Luss, R., Rosset, S., Shahar, M.: Efficient regularized isotonic regression with application to gene-gene interaction search. Annals of Applied Statistics 6(1) (2012)

    Google Scholar 

  22. Margot, F., Queyranne, M., Wang, Y.: Decompositions, Network Flows, and a Precedence Constrained Single-Machine Scheduling ProblemDecompositions, Network Flows, and a Precedence Constrained Single-Machine Scheduling Problem. Operations Research 51(6), 981–992 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maxwell, W., Muckstadt, J.: Establishing consistent and realistic reorder intervals in production-distribution systems. Operations Research 33, 1316–1341 (1985)

    Article  MATH  Google Scholar 

  24. Mohring, H.R., Schulz, A.S., Uetz, M.: Approximation in Stochastic Scheduling: The Power of LP-based Priority Policies. Journal of the ACM 46(6), 924–942 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schulz, A.S.: Scheduling to minimize total weighted completion time: performance guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  26. Skutella, M., Uetz, M.: Stochastic Machine Scheduling with Precedence Constraints. SIAM Journal on Computing 34(4), 788–802 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Spouge, J., Wan, H., Wilbur, W.: Least squares isotonic regression in two dimensions. J. Optimization Theory and Apps. 117, 585–605 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Suehiro, D., Hatano, K., Kijima, S., Takimoto, E., Nagano, K.: Online prediction under submodular constraints. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS, vol. 7568, pp. 260–274. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Woeginger, G.J.: On the approximability of average completion time scheduling under precedence constraints. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 887–897. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  30. Woeginger, G.J., Schuurman, P.: Polynomial time approximation algorithms for machine scheduling: Ten open problems. Journal of Scheduling 2, 203–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yasutake, S., Hatano, K., Kijima, S., Takimoto, E., Takeda, M.: Online linear optimization over permutations. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 534–543. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  32. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer-Verlag (1995)

    Google Scholar 

  33. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), pp. 928–936 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Hatano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fujita, T., Hatano, K., Kijima, S., Takimoto, E. (2015). Online Linear Optimization for Job Scheduling Under Precedence Constraints. In: Chaudhuri, K., GENTILE, C., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2015. Lecture Notes in Computer Science(), vol 9355. Springer, Cham. https://doi.org/10.1007/978-3-319-24486-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24486-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24485-3

  • Online ISBN: 978-3-319-24486-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics