Skip to main content

Subsampling in Smoothed Range Spaces

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9355))

Included in the following conference series:

Abstract

We consider smoothed versions of geometric range spaces, so an element of the ground set (e.g. a point) can be contained in a range with a non-binary value in [0, 1]. Similar notions have been considered for kernels; we extend them to more general types of ranges. We then consider approximations of these range spaces through \(\varepsilon \)-nets and \(\varepsilon \)-samples (aka \(\varepsilon \)-approximations). We characterize when size bounds for \(\varepsilon \)-samples on kernels can be extended to these more general smoothed range spaces. We also describe new generalizations for \(\varepsilon \)-nets to these range spaces and show when results from binary range spaces can carry over to these smoothed ones.

Thanks to supported by NSF CCF-1350888, IIS-1251019, and ACI-1443046.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fitzgibbon, A., Bergamo, A., Torresani, L.: Picodes: learning a compact code for novel-category recognition. In: NIPS (2011)

    Google Scholar 

  2. Alon, N., Ben-David, S., Cesa-Bianchi, N., Haussler, D.: Scale-sensitive dimensions, uniform convergence, and learnability. Journal of ACM 44, 615–631 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronov, B., Ezra, E., Sharir, M.: Small size \(\varepsilon \)-nets for axis-parallel rectangles and boxes. Siam Journal of Computing 39, 3248–3282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, J.: Irregularities of distribution I. Acta Mathematica 159, 1–49 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bern, M., Eppstein, D.: Worst-case bounds for subadditive geometric graphs. In: SOCG (1993)

    Google Scholar 

  6. Chazelle, B.: The Discrepancy Method. Cambridge (2000)

    Google Scholar 

  7. Chazelle, B., Matousek, J.: On linear-time deterministic algorithms for optimization problems in fixed dimensions. J. Algorithms 21, 579–597 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge (2009)

    Google Scholar 

  9. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Har-Peled, S., Kaplan, H., Sharir, M., Smorodinksy, S.: \(\varepsilon \)-nets for halfspaces revisited. Technical report (2014). arXiv:1410.3154

  11. Haussler, D., Welzl, E.: epsilon-nets and simplex range queries. Disc. & Comp. Geom. 2, 127–151 (1987)

    Article  MATH  Google Scholar 

  12. Joshi, S., Kommaraju, R.V., Phillips, J.M., Venkatasubramanian, S.: Comparing distributions and shapes using the kernel distance. In: SOCG (2011)

    Google Scholar 

  13. Larsen, K.G.: On range searching in the group model and combinatorial discrepancy. In: FOCS (2011)

    Google Scholar 

  14. Li, Y., Long, P.M., Srinivasan, A.: Improved bounds on the samples complexity of learning. J. Comp. and Sys. Sci. 62, 516–527 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matoušek, J.: Tight upper bounds for the discrepancy of halfspaces. Discrete & Computational Geometry 13, 593–601 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matoušek, J.: Geometric Discrepancy. Springer (1999)

    Google Scholar 

  17. Matoušek, J., Seidel, R., Welzl, E.: How to net a lot with little: small \(\varepsilon \)-nets for disks and halfspaces. In: SOCG (1990)

    Google Scholar 

  18. Pach, J., Agarwal, P.K.: Combinatorial geometry. Wiley, Wiley-Interscience series in discrete mathematics and optimization (1995)

    Google Scholar 

  19. Pach, J., Tardos, G.: Tight lower bounds for the size of epsilon-nets. Journal of American Mathematical Society 26, 645–658 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Phillips, J.M.: Algorithms for \(\varepsilon \)-approximations of terrains. In: Automata, Languages and Programming, pp. 447–458. Springer (2008)

    Google Scholar 

  21. Phillips, J.M.: Eps-samples for kernels. In: SODA (2013)

    Google Scholar 

  22. Pollard, D.: Emperical processes: theory and applications. In: NSF-CBMS REgional Confernece Series in Probability and Statistics (1990)

    Google Scholar 

  23. Pyrga, E., Ray, S.: New existence proofs \(\varepsilon \)-nets. In: SOCG (2008)

    Google Scholar 

  24. Vapnik, V.: Inductive principles of the search for empirical dependencies. In: COLT (1989)

    Google Scholar 

  25. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16, 264–280 (1971)

    Article  MATH  Google Scholar 

  26. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching in the plane. In: FOCS (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Phillips, J.M., Zheng, Y. (2015). Subsampling in Smoothed Range Spaces. In: Chaudhuri, K., GENTILE, C., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2015. Lecture Notes in Computer Science(), vol 9355. Springer, Cham. https://doi.org/10.1007/978-3-319-24486-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24486-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24485-3

  • Online ISBN: 978-3-319-24486-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics