Skip to main content

I-Louvain: An Attributed Graph Clustering Method

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XIV (IDA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9385))

Included in the following conference series:

Abstract

Modularity allows to estimate the quality of a partition into communities of a graph composed of highly inter-connected vertices. In this article, we introduce a complementary measure, based on inertia, and specially conceived to evaluate the quality of a partition based on real attributes describing the vertices. We propose also I-Louvain, a graph nodes clustering method which uses our criterion, combined with Newman’s modularity, in order to detect communities in attributed graph where real attributes are associated with the vertices. Our experiments show that combining the relational information with the attributes allows to detect the communities more efficiently than using only one type of information. In addition, our method is more robust to data degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I-Louvain source code and dataset: http://bit.ly/ILouvain.

  2. 2.

    http://perso.crans.org/aynaud/communities/.

References

  1. Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10(5), 053039 (2008)

    Article  Google Scholar 

  2. Aynaud, T., Blondel, V., Guillaume, J.L., Lambiotte, R.: Multilevel local optimization of modularity. In: Graph Partitioning, pp. 315–345. Wiley (2013)

    Google Scholar 

  3. Bichot, C., Siarry, P.: Graph Partitioning. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of community hierarchies in large networks. CoRR abs/0803.0476 (2008)

  5. Combe, D.: Detection de communautes dans les reseaux d’information utilisant liens et attributs. In: Ph.D. Thesis, Jean Monnet University, Lyon (2013)

    Google Scholar 

  6. Combe, D., Largeron, C., Egyed-Zsigmond, E., Géry, M.: Combining relations and text in scientific network clustering. In: International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1280–1285 (2012)

    Google Scholar 

  7. Cruz, J.D., Bothorel, C., Poulet, F.: Entropy based community detection in augmented social networks. In: Computational Aspects of Social Networks (CASoN 2011), pp. 163–168 (2011)

    Google Scholar 

  8. Dang, T.A.: Analysis of community in social networks. In: Ph.D. Thesis, Paris 13 (2013)

    Google Scholar 

  9. Dang, T.A., Viennet, E.: Community detection based on structural and attribute similarities. In: International Conference on Digital Society (ICDS), pp. 7–12 (2012)

    Google Scholar 

  10. Ding, C., He, X., Zha, H., Gu, M.: A min-max cut algorithm for graph partitioning and data clustering. In: ICDM, pp. 107–114 (2001)

    Google Scholar 

  11. Elhadi, H., Agam, G.: Structure and attributes community detection: comparative analysis of composite, ensemble and selection methods. In: 7th Workshop on Social Network Mining and Analysis, SNAKDD 2013, pp. 10:1–10:7. ACM, New York (2013)

    Google Scholar 

  12. Ester, M., Ge, R., Gao, B., Hu, Z., Ben-Moshe, B.: Joint cluster analysis of attribute data and relationship data: the connected k-center problem. In: SIAM International Conference on Data Mining, pp. 25–46. ACM Press (2006)

    Google Scholar 

  13. Fjällström, P.O.: Algorithms for graph partitioning: a survey. Science 3(10), 1–36 (1998)

    Google Scholar 

  14. Flake, G., Tarjan, R., Tsioutsiouliklis, K.: Graph clustering and minimum cut trees. Internet Math. 1(4), 385–408 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  16. Ge, R., Ester, M., Gao, B.J., Hu, Z., Bhattacharya, B., Ben-Moshe, B.: Joint cluster analysis of attribute data and relationship data. ACM Trans. Knowl. Disc. Data 2(2), 1–35 (2008)

    Article  Google Scholar 

  17. Günnemann, S., Farber, I., Boden, B., Seidl, T.: Subspace clustering meets dense subgraph mining: a synthesis of two paradigms. In: ICDM, pp. 845–850 (2010)

    Google Scholar 

  18. Günnemann, S., Boden, B., Seidl, T.: DB-CSC: a density-based approach for subspace clustering in graphs with feature vectors. In: Machine Learning and Knowledge Discovery in Databases, pp. 565–580 (2011)

    Google Scholar 

  19. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  MATH  Google Scholar 

  20. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5), 056117 (2009)

    Article  Google Scholar 

  21. Li, H., Nie, Z., Lee, W.C.W., Giles, C.L., Wen, J.R.: Scalable community discovery on textual data with relations. In: 17th ACM Conference on Information and Knowledge Management, pp. 1203–1212 (2008)

    Google Scholar 

  22. Moser, F., Ge, R., Ester, M.: Joint cluster analysis of attribute and relationship data without a-priori specification of the number of clusters. In: 13th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 510–519 (2007)

    Google Scholar 

  23. Newman, M.: Detecting community structure in networks. Eur. Phys. J. B-Condensed Matter and Complex Systems 38(2), 321–330 (2004)

    Article  MathSciNet  Google Scholar 

  24. Newman, M.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. U.S.A. 103(23), 8577–8696 (2006)

    Article  Google Scholar 

  25. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 1–16 (2004)

    Article  Google Scholar 

  26. Prado, A., Plantevit, M., Robardet, C., Boulicaut, J.F.: Mining graph topological patterns: finding covariations among vertex descriptors. IEEE Trans. Knowl. Data Eng. 25(9), 2090–2104 (2013)

    Article  Google Scholar 

  27. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74(1), 016110 (2006)

    Article  MathSciNet  Google Scholar 

  28. Satuluri, V., Parthasarathy, S.: Scalable graph clustering using stochastic flows: applications to community discovery. In: 15th SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 737–746 (2009)

    Google Scholar 

  29. Schaeffer, S.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  MATH  Google Scholar 

  30. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  31. Stattner, E., Collard, M.: From frequent features to frequent social links. Int. J. Inf. Sys. Model. Des. (IJISMD) 4(3), 76–98 (2013)

    Article  Google Scholar 

  32. Steinhaeuser, K., Chawla, N.: Community detection in a large real-world social network. In: Social Computing, Behavioral Modeling, and Prediction, pp. 168–175 (2008)

    Google Scholar 

  33. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  35. Yang, J., McAuley, J.J., Leskovec, J.: Community detection in networks with node attributes. In: ICDM, pp. 1151–1156 (2013)

    Google Scholar 

  36. Zhou, Y., Cheng, H., Yu, J.: Graph clustering based on structural/attribute similarities. VLDB Endowment 2(1), 718–729 (2009)

    Article  Google Scholar 

  37. Zhou, Y., Cheng, H., Yu, J.X.: Clustering large attributed graphs: an efficient incremental approach. In: ICDM 2010, pp. 689–698 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank P.N. Mougel for his help in building the bibliographic dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Largeron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E. (2015). I-Louvain: An Attributed Graph Clustering Method. In: Fromont, E., De Bie, T., van Leeuwen, M. (eds) Advances in Intelligent Data Analysis XIV. IDA 2015. Lecture Notes in Computer Science(), vol 9385. Springer, Cham. https://doi.org/10.1007/978-3-319-24465-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24465-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24464-8

  • Online ISBN: 978-3-319-24465-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics