Skip to main content

Detecting Overlapping Protein Communities in Disease Networks

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2014)

Abstract

In this work we propose a novel hybrid technique for overlapping community detection in biological networks able to exploit both the available quantitative and the semantic information, that we call Semantically Enriched Fuzzy C-Means Spectral Modularity (SE-FSM) community detection method. We applied SE-FSM in analyzing Protein-protein interactions (PPIs) networks of HIV-1 infection and Leukemia in Homo sapiens. SE-FSM found significant overlapping biological communities. In particular, it found a strong relationship between HIV-1 and Leukemia as their communities share several significant pathways, and biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)

    Article  Google Scholar 

  2. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, Norwell (1981)

    Book  MATH  Google Scholar 

  3. De Las Rivas, J., Fontanillo, C.: Protein-Protein Interactions Essentials: Key Concepts to Building and Analyzing Interactome Networks. PLoS Comput. Biol. 6(6), e1000807 (2010). doi:10.1371/journal.pcbi.1000807

    Google Scholar 

  4. Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM Journal of Research and Development 17(5964), 420–425 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recognition 41, 176–190 (2008). ISSN: 0031–3203

    Google Scholar 

  6. Fred, A.L., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 835–850 (2005)

    Article  Google Scholar 

  7. Hutter, J.J.: Childhood leukemia. Pediatrics in Review 31(6), 234–241 (2010)

    Article  Google Scholar 

  8. Kuncheva, L.I.: Combining Pattern Classifiers. Methods and Algorithms. Wiley (2004)

    Google Scholar 

  9. Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Mulloy, J.C.: Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. The Journal of Clinical Investigation 123(9), 3876 (2013)

    Article  Google Scholar 

  10. Mahmoud, H., Masulli, F., Rovetta, S., Russo, G.: Exploiting quantitative and semantic information in protein-protein interactions networks analysis. In: Computational Intelligence Methods for Bioinformatics and Biostatistics-11th International Meeting (CIBB 2014), Cambridge, UK, June 26-28, 2014

    Google Scholar 

  11. Mahmoud, H., Masulli, F., Rovetta, S., Russo, G.: Community detection in protein-protein interaction networks using spectral and graph approaches. In: Formenti, E., Tagliaferri, R., Wit, E. (eds.) CIBB 2013. LNCS, vol. 8452, pp. 62–75. Springer, Heidelberg (2014)

    Google Scholar 

  12. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling based method for class discovery and visualization of gene expression microarray data. Machine Learning 52, 91–118 (2003)

    Article  MATH  Google Scholar 

  13. Nepusz, T., Petrczi, A., Ngyessy, L., Bazs, F.: Fuzzy communities and the concept of bridgeness in complex networks. Physical Review E 77(1), 016107 (2008)

    Google Scholar 

  14. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2), 026113 (2004)

    Google Scholar 

  15. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Proceedings of Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  16. Rivals, I., Personnaz, L., Taing, L., Potier, M.C.: Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23(4), 401–407 (2007)

    Article  Google Scholar 

  17. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

  18. Strehl, A., Ghosh, J.: Cluster ensembles A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–618 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Tastan, O., Qi, Y., Carbonell, J., Klein-Seetharaman, J.: Prediction of interactions between HIV-1 and human proteins by information integration. In: Pacific Symposium on Biocomputing, vol. 14, PubMed PMID: 19209727; PubMed Central PMCID: PMC3263379, pp. 516–527 (2009)

    Google Scholar 

  20. Havens, T.C., Bezdek, J.C., Leckie, C., Ramamohanarao, K., Palaniswami, M.: A soft modularity function for detecting fuzzy communities in social networks. IEEE Transactions Fuzzy Systems 21(6), 1170–1175 (2013)

    Article  Google Scholar 

  21. Rosasco, R., Mahmoud, H., Rovetta, S., Masulli, F.: A quality-driven ensemble approach to automatic model selection in clustering. In: 23nd Italian Workshop on Neural Networks, WIRN 2013, Vietri, Italy (2013)

    Google Scholar 

  22. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  23. Von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M.A., Bork, P.: STRING: known and predicted proteinprotein associations, integrated and transferred across organisms. Nucleic Acids Res. 33(1), 433–437 (2005)

    Google Scholar 

  24. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1601–1608 (2004)

    Google Scholar 

  25. Zhang, S., Wang, R.S., Zhang, X.S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and its Applications 374(1), 483–490 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mahmoud, H., Masulli, F., Rovetta, S., Russo, G. (2015). Detecting Overlapping Protein Communities in Disease Networks. In: DI Serio, C., Liò, P., Nonis, A., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2014. Lecture Notes in Computer Science(), vol 8623. Springer, Cham. https://doi.org/10.1007/978-3-319-24462-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24462-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24461-7

  • Online ISBN: 978-3-319-24462-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics