Advertisement

Cell Locomotion in One Dimension

  • Pierre Recho
  • Lev Truskinovsky
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

We overview a sub-class of mathematical models of lamellipodial cell motility on a substrate (crawling) that are based on a projection of a complex intra-cellular dynamics into one dimension. Despite the unavoidable oversimplifications associated with such a representation (loss of flow continuity, neglect of orientational order, misrepresentation of volume control mechanisms, etc.), one-dimensional models are extremely helpful in elucidating the individual roles of the three main active elements of lamellipodial motility: contraction, protrusion and adhesion. Moreover, by shifting the focus from shape to velocity, one-dimensional models reveal in an analytically transparent setting an intricate interplay between these mechanisms involving cooperation and competition.

Notes

Acknowledgements

Considerable part of this research was conducted in collaboration with J-F. Joanny and T. Putelat. We thank F. Alouges, D. Ambrosi, O. du Roure, J. Etienne, G. Geymonnat, A. Grosberg, K. Kruse, and C. Verdier for helpful discussions.

References

  1. 1.
    M. Abercrombie, Contact inhibition: the phenomenon and its biological implications. Natl. Cancer Inst. Monogr. 26, 249 (1967)Google Scholar
  2. 2.
    M. Abercrombie, Croonian lecture, 1978 - crawling movement of metazoan cells (English). Proc. R. Soc. Lond. Ser B Biol. Sci. 207(1167), 129–147 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Adler, S. Givli, Closing the loop: lamellipodia dynamics from the perspective of front propagation. Phys. Rev. E 88(4), 042708 (2013)Google Scholar
  4. 4.
    A. Ahmadi, M.C. Marchetti, T.B. Liverpool, Hydrodynamics of isotropic and liquid crystalline active polymer solutions. Phys. Rev. E 74(6), 061913 (2006)Google Scholar
  5. 5.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn. (Garland Science Taylor & Francis Group, New York, 2002)Google Scholar
  6. 6.
    J. Allard, A. Mogilner, Traveling waves in actin dynamics and cell motility. Curr. Opin. Cell Biol. 25(1), 107–115 (2013)CrossRefGoogle Scholar
  7. 7.
    W. Alt, M. Dembo, Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci. 156(12), 207–228 (1999)zbMATHCrossRefGoogle Scholar
  8. 8.
    S.J. Altschuler, S.B. Angenent, Y. Wang, L.F. Wu, On the spontaneous emergence of cell polarity. Nature 454(7206), 886–889 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Amazigo, B. Budiansky, G.F. Carrier, Asymptotic analyses of the buckling of imperfect columns on nonlinear elastic foundations. Int. J. Solids Struct. 6(10), 1341–1356 (1970)zbMATHCrossRefGoogle Scholar
  10. 10.
    S. Banerjee, M.C. Marchetti, Substrate rigidity deforms and polarizes active gels. Europhys. Lett. 96(2), 28003 (2011)Google Scholar
  11. 11.
    S. Banerjee, M.C. Marchetti, Contractile stresses in cohesive cell layers on finite-thickness substrates. Phys. Rev. Lett. 109(10), 108101 (2012)Google Scholar
  12. 12.
    E.L. Barnhart, G.M. Allen, F. Julicher, J.A. Theriot, Bipedal locomotion in crawling cells. Biophys. J. 98(6), 933–942 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    E.L. Barnhart, K.-C. Lee, K. Keren, A. Mogilner, J.A. Theriot, An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol. 9(5), e1001059 (2011)Google Scholar
  14. 14.
    E. Barnhart, K.-C. Lee, G.M. Allen, J.A. Theriot, A. Mogilner, Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes. PNAS 112(16), 5045–5050 (2015) published ahead of print April 6, 2015Google Scholar
  15. 15.
    P. Bell, Cell behavior - a tribute to Abercrombie, in ed. by R. Michael - Bellairs, A. Curtis, G. Dunn (English). Am Scientist 72(1), 88–89 (1984)Google Scholar
  16. 16.
    R. Bellairs, Michael Abercrombie (1912–1979) (English). Int. J. Dev. Biol. 44(1), 23–28 (2000)Google Scholar
  17. 17.
    A. Bernheim-Groswasser, J. Prost, C. Sykes, Mechanism of actin-based motility: a dynamic state diagram (English). Biophys. J. 89(2), 1411–1419 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Bershadsky, M. Kozlov, B. Geiger, Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr. Opin. Cell Biol. 18(5), 472–481 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Besser, U.S. Schwarz, Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction. New J. Phys. 9(11), 425 (2007)Google Scholar
  20. 20.
    C. Blanch-Mercader, J. Casademunt, Spontaneous motility of actin lamellar fragments. Phys. Rev. Lett. 110(7), 078102 (2013)Google Scholar
  21. 21.
    D. Boal, Mechanics of the Cell (Cambridge University Press, Cambridge, 2002)Google Scholar
  22. 22.
    J.S. Bois, F. Jülicher, S.W. Grill, Pattern formation in active fluids. Phys. Rev. Lett. 106(2), 028103 (2011)Google Scholar
  23. 23.
    D. Bray, Cell Movements: From Molecules to Motility, 2nd edn. (Garland Science, New York, 2000)Google Scholar
  24. 24.
    C.P. Broedersz, F.C. MacKintosh, Modeling semiflexible polymer networks. Rev. Mod. Phys. 86(3), 995–1036 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    J. Brugués, J. Casademunt, Self-organization and cooperativity of weakly coupled molecular motors under unequal loading. Phys. Rev. Lett. 102(11), 118104 (2009)Google Scholar
  26. 26.
    C. Brunner, A. Ehrlicher, B. Kohlstrunk, D. Knebel, J. Ks, M. Goegler, Cell migration through small gaps. Eur. Biophys. J. 35(8), 713–719 (2006). doi:10.1007/s00249-006-0079-1CrossRefGoogle Scholar
  27. 27.
    E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    A.C. Callan-Jones, F. Julicher, Hydrodynamics of active permeating gels. New J. Phys. 13(9), 093027 (2011). http://stacks.iop.org/1367-2630/13/i=9/a=093027
  29. 29.
    A. Callan-Jones, R. Voituriez, Active gel model of amoeboid cell motility. New J. Phys. 15(2), 025022 (2013)Google Scholar
  30. 30.
    A.C. Callan-Jones, J.-F. Joanny, J. Prost, Viscous-fingering-like instability of cell fragments. Phys. Rev. Lett. 100(25), 258106 (2008)Google Scholar
  31. 31.
    V. Calvez, N. Meunier, R. Voituriez, A one-dimensional Keller-Segel equation with a drift issued from the boundary. C. R. Math. 348(1112),  629–634 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    O. Campas, L. Mahadevan, J.-F. Joanny, Actin network growth under load (English). Biophys. J. 102(5), 1049–1058 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    A.E. Carlsson, Mechanisms of cell propulsion by active stresses. New J. Phys. 13(7), 073009 (2011)Google Scholar
  34. 34.
    A.E. Carlsson, D. Sept, Mathematical modeling of cell migration (English), in Biophysical Tools for Biologists: Vol 1 In Vitro Techniques. Methods in Cell Biology, vol. 84 (Elsevier Academic Press Inc, San Diego, 2008), pp. 911+Google Scholar
  35. 35.
    J. Carr, R.L. Pego, Metastable patterns in solutions of ut = e2 uxx - f(u). Commun. Pure Appl. Math. 42(5), 523–576 (1989)zbMATHCrossRefGoogle Scholar
  36. 36.
    C. Chen, C. Lin, On the symmetry of blowup solutions to a mean field equation. Ann. Inst. Henri Poincare (C) Non Linear Anal. 18(3), 271–296 (2001) [Elsevier]Google Scholar
  37. 37.
    D.T.N. Chen, Q. Wen, P.A. Janmey, J.C. Crocker, A.G. Yodh, Rheology of soft materials, in Annual Review of Condensed Matter Physics, ed. by J.S. Langer, vol. 1 (2010), pp. 301–322. http://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-070909-104120
  38. 38.
    B. Cleuren, C. Van den Broeck, Brownian motion with absolute negative mobility (English) Phys. Rev. E 67(5), Part 2 (2003)Google Scholar
  39. 39.
    B.N. Cox, D.W. Smith, On strain and stress in living cells. J. Mech. Phys. Solids 71, 239–252 (2014)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    G. Csucs, K. Quirin, G. Danuser, Locomotion of fish epidermal keratocytes on spatially selective adhesion patterns. Cell Motil. Cytoskeleton 64(11), 856–867 (2007)CrossRefGoogle Scholar
  41. 41.
    A.T. Dawes, G.B. Ermentrout, E.N. Cytrynbaum, L. Edelstein-Keshet, Actin filament branching and protrusion velocity in a simple 1D model of a motile cell. J. Theor. Biol. 242(2), 265–279 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Courier Dover Publications, New York, 2013)zbMATHGoogle Scholar
  43. 43.
    V.S. Deshpande, M. Mrksich, R.M. McMeeking, A.G. Evans, A bio-mechanical model for coupling cell contractility with focal adhesion formation (English). J. Mech. Phys. Solids 56(4), 1484–1510 (2008)ADSzbMATHCrossRefGoogle Scholar
  44. 44.
    P. DiMilla, K. Barbee, D. Lauffenburger, Mathematical-model for the effects of adhesion and mechanics on cell-migration speed (English). Biophys. J. 60(1), 15–37 (1991)CrossRefGoogle Scholar
  45. 45.
    E. Doedel, A. Champneys, F. Dercole, T. Fairgrieve, Y.A. Kuznetsov, B. Oldeman, R. Paffenroth, B Sandstede, X. Wang, C. Zhang, AUTO-07p, in Continuation and Bifurcation Software for Ordinary Differential Equations (2007). Available at http://cmvl.cs.concordia.ca/auto
  46. 46.
    K. Doubrovinski, K. Kruse, Self-organization of treadmilling filaments. Phys. Rev. Lett. 99(22), 228104 (2007)Google Scholar
  47. 47.
    K. Doubrovinski, K. Kruse, Self-organization in systems of treadmilling filaments (English). Eur. Phys. J. E 31(1), 95–104 (2010)CrossRefGoogle Scholar
  48. 48.
    K. Doubrovinski, K. Kruse, Cell motility resulting from spontaneous polymerization waves. Phys. Rev. Lett. 107(25), 258103 (2011)Google Scholar
  49. 49.
    X. Du, K. Doubrovinski, M. Osterfield, Self-organized cell motility from motor-filament interactions. Biophys. J. 102(8), 1738–1745 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    J. Étienne, D. Mitrossilis, J. Fouchard, N. Bufi, P. Durand-Smet, A. Asnacios, Collective dynamics of actomyosin cortex endow cells with intrinsic mechanosensing properties. arXiv preprint. arXiv:1407.2765, accepted in PNAS (2014)Google Scholar
  51. 51.
    B. Finlayson, L. Scriven, Convective instability by active stress. Proc. R. Soc. Lond. A. Math. Phys. Sci. 310(1501), 183–219 (1969)ADSzbMATHCrossRefGoogle Scholar
  52. 52.
    H. Gao, J. Qian, B. Chen, Probing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modelling framework. J. R. Soc. Interface 8(62), 1217–1232 (2011)CrossRefGoogle Scholar
  53. 53.
    M.L. Gardel, B. Sabass, L. Ji, G. Danuser, U.S. Schwarz, C.M. Waterman, Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183(6), 999–1005 (2008)CrossRefGoogle Scholar
  54. 54.
    M.L. Gardel, I.C. Schneider, Y. Aratyn-Schaus, C.M. Waterman, Mechanical integration of actin and adhesion dynamics in cell migration, in Annual Review of Cell and Developmental Biology, ed. by R. Schekman, L. Goldstein, R. Lehmann, vol. 26. (2010), pp. 315–333. http://www.annualreviews.org/doi/abs/10.1146/annurev.cellbio.011209.122036
  55. 55.
    L. Giomi, A. DeSimone, Spontaneous division and motility in active nematic droplets. Phys. Rev. Lett. 112(14), 147802 (2014)Google Scholar
  56. 56.
    F. Gladiali, M. Grossi, H. Ohtsuka, T. Suzuki, Morse indices of multiple blow-up solutions to the two-dimensional Gel’fand problem. arXiv preprint arXiv:1210.1373 (2012)Google Scholar
  57. 57.
    P. Haenggi, F. Marchesoni, S. Savel’ev, G. Schmid, Asymmetry in shape causing absolute negative mobility (English). Phys. Rev. E 82(4), Part 1 (2010)Google Scholar
  58. 58.
    R.J. Hawkins, R. Voituriez, Mechanisms of cell motion in confined geometries. Math. Model. Nat. Phenom. 5(1), 84–105 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    R.J. Hawkins, O. Bénichou, M. Piel, R. Voituriez, Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80(4), 040903+ (2009)Google Scholar
  60. 60.
    R.J. Hawkins, M. Piel, G. Faure-Andre, A.M. Lennon-Dumenil, J.F. Joanny, J. Prost, R. Voituriez, Pushing off the walls: a mechanism of cell motility in confinement (English). Phys. Rev. Lett. 102(5), 058103 (2009)Google Scholar
  61. 61.
    R.J. Hawkins, R. Poincloux, O. Benichou, M. Piel, P. Chavrier, R. Voituriez, Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. Biophys. J. 101(5), 1041–1045 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    C.A. Heckman, Contact inhibition revisited. J. Cellular Physiol. 220(3), 574–575 (2009)CrossRefGoogle Scholar
  63. 63.
    M. Herant, M. Dembo, Form and function in cell motility: from fibroblasts to keratocytes. Biophys. J. 98(8), 1408–1417 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    N. Hodge, P. Papadopoulos, Continuum modeling and numerical simulation of cell motility. J. Math. Biol. 64(7), 1253–1279 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    B.D. Hoffman, J.C. Crocker, Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11, 259–288 (2009)CrossRefGoogle Scholar
  66. 66.
    J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland, 2001)Google Scholar
  67. 67.
    J. Howard, S.W. Grill, J.S. Bois, Turing’s next steps: the mechanochemical basis of morphogenesis. Nat. Rev. Mol. Cell Biol. 12(6), 392–398 (2011)CrossRefGoogle Scholar
  68. 68.
    E.-M. Hur, I.H. Yang, D.-H. Kim, J. Byun, W.-L. Xu, P.R. Nicovich, R. Cheong, A. Levchenko, N. Thakor, F.-Q. Zhou, et al., Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proc. Natl. Acad. Sci. 108(12), 5057–5062 (2011)ADSCrossRefGoogle Scholar
  69. 69.
    H. Jiang, S.X. Sun, Cellular pressure and volume regulation and implications for cell mechanics. Biophys. J. 105(3), 609–619 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    A. Jilkine, L. Edelstein-Keshet, A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput. Biol. 7(4), e1001121 (2011)Google Scholar
  71. 71.
    J.-F. Joanny, J. Prost, Constructing tools for the description of cell dynamics, in Biological Physics: Poincare Seminar 2009, ed. by B. Duplantier, V. Rivasseau. Progress in Mathematical Physics, vol. 60. 12th Poincare Seminar on Biological Physics, Inst Henri Poincare, Paris, Jan 31, 2009. Commissariat Energie Atomique, Div Sci Matiere; Daniel Iagolnitzer Fdn; Ecole Polytechnique (2011), pp. 1–32Google Scholar
  72. 72.
    J. Joanny, F. Julicher, J. Prost, Motion of an adhesive gel in a swelling gradient: a mechanism for cell locomotion (English). Phys. Rev. Lett. 90(16), 168102 (2003)Google Scholar
  73. 73.
    J.F. Joanny, F. Julicher, K. Kruse, J. Prost, Hydrodynamic theory for multi-component active polar gels (English). New J. Phys. 9(11), 422 (2007)Google Scholar
  74. 74.
    K. John, P. Peyla, K. Kassner, J. Prost, C. Misbah, Nonlinear study of symmetry breaking in actin gels: implications for cellular motility. Phys. Rev. Lett. 100(6), 068101 (2008)Google Scholar
  75. 75.
    F. Julicher, K. Kruse, J. Prost, J.-F. Joanny, Active behavior of the cytoskeleton (English). Phys. Rep. Rev. Section Phys. Lett. 449(1–3), 3–28 (2007)Google Scholar
  76. 76.
    H. Keller, A.D. Zadeh, P. Eggli, Localised depletion of polymerised actin at the front of Walker carcinosarcoma cells increases the speed of locomotion. Cell Motil. Cytoskeleton 53(3), 189–202 (2002)CrossRefGoogle Scholar
  77. 77.
    L. Kimpton, J. Whiteley, S. Waters, J. Oliver, On a poroviscoelastic model for cell crawling. J. Math. Biol. 70(1), 133–171 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    W. Koiter, Current Trends in the Theory of Buckling (Springer, Berlin, 1976)CrossRefGoogle Scholar
  79. 79.
    K. Kruse, F. Julicher, Actively contracting bundles of polar filaments. Phys. Rev. Lett. 85(8), 1778–1781 (2000)ADSCrossRefGoogle Scholar
  80. 80.
    K. Kruse, F. Jülicher, Self-organization and mechanical properties of active filament bundles. Phys. Rev. E 67(5), 051913 (2003)Google Scholar
  81. 81.
    K. Kruse, A. Zumdieck, F. Jlicher, Continuum theory of contractile fibres. Europhys. Lett. 64(5), 716 (2003)Google Scholar
  82. 82.
    K. Kruse, J. Joanny, F. Julicher, J. Prost, K. Sekimoto, Generic theory of active polar gels: a paradigm for cytoskeletal dynamics (English). Eur. Phys. J. E 16(1), 5–16 (2005)CrossRefGoogle Scholar
  83. 83.
    K. Kruse, J.F. Joanny, F. Julicher, J. Prost, Contractility and retrograde flow in lamellipodium motion (English). Phys. Biol. 3(2), 130–137 (2006)ADSCrossRefGoogle Scholar
  84. 84.
    O.M. Lancaster, B. Baum, Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin. Cell Dev. Biol. 34(0), 109–115 (2014)CrossRefGoogle Scholar
  85. 85.
    O.M. Lancaster, M.L. Berre, A. Dimitracopoulos, D. Bonazzi, E. Zlotek- Zlotkiewicz, R. Picone, T. Duke, M. Piel, B. Baum, Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell 25(3), 270–283 (2013)Google Scholar
  86. 86.
    K. Larripa, A. Mogilner, Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell (English). Physica A-Stat. Mech. Appl. 372(1) (2006). Workshop on Common Trends in Traffic Systems, Kanpur, Feb 08–10, 2006, pp. 113–123Google Scholar
  87. 87.
    E. Lauga, T.R. Powers, The hydrodynamics of swimming microorganisms (English). Rep. Progr. Phys. 72(9), 096601 (2009)Google Scholar
  88. 88.
    Y. Lin, A model of cell motility leading to biphasic dependence of transport speed on adhesive strength. J. Mech. Phys. Solids 58(4), 502–514 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Y. Lin, M. Inamdar, L. Freund, The competition between Brownian motion and adhesion in soft materials. J. Mech. Phys. Solids 56(1), 241–250 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Z. Liu, L. A. van Grunsven, E. Van Rossen, B. Schroyen, J.-P. Timmermans, A. Geerts, H. Reynaert, Blebbistatin inhibits contraction and accelerates migration in mouse hepatic stellate cells. Br. J. Pharmacol. 159(2), 304–315 (2010)CrossRefGoogle Scholar
  91. 91.
    J. Löber, F. Ziebert, I.S. Aranson, Modeling crawling cell movement on soft engineered substrates. Soft Matter 10(9), 1365–1373 (2014)ADSCrossRefGoogle Scholar
  92. 92.
    M.L. Lombardi, D.A. Knecht, M. Dembo, J. Lee, Traction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement. J. Cell Sci. 120(Pt 9), 1624–1634 (2007)CrossRefGoogle Scholar
  93. 93.
    A.J. Loosley, J.X. Tang, Stick-slip motion and elastic coupling in crawling cells. Phys. Rev. E 86(3), Part 1 (2012)Google Scholar
  94. 94.
    L. Machura, M. Kostur, P. Talkner, J. Luczka, P. Haenggi, Absolute negative mobility induced by thermal equilibrium fluctuations (English). Phys. Rev. Lett. 98(4), 040601 (2007)Google Scholar
  95. 95.
    M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R. Aditi Simha, Soft active matter. (2012). ArXiv e-prints. arXiv:1207.2929 [cond-mat.soft]Google Scholar
  96. 96.
    M. Marchetti, J. Joanny, S. Ramaswamy, T. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85(3), 1143 (2013)Google Scholar
  97. 97.
    M. Mayer, M. Depken, J.S. Bois, F. Julicher, S.W. Grill, Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467(7315), 617–U150 (2010)ADSCrossRefGoogle Scholar
  98. 98.
    G. Meurant, A review on the inverse of symmetrical tridiagonal and block tridiagonal matrices (English). SIAM J. Matrix Anal. Appl. 13(3), 707–728 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Q. Mi, D. Swigon, B. Riviere, S. Cetin, Y. Vodovotz, D.J. Hackam, One-dimensional elastic continuum model of enterocyte layer migration (English). Biophys. J. 93(11), 3745–3752 (2007)ADSCrossRefGoogle Scholar
  100. 100.
    S. Mikhlin, Linear Integral Equations (Hindustan Publishing Corp., DELHI (India) 1960)zbMATHGoogle Scholar
  101. 101.
    M.R.K. Mofrad, Rheology of the cytoskeleton. Ann. Rev. Fluid Mech. 41, 433–453 (2009)ADSzbMATHCrossRefGoogle Scholar
  102. 102.
    A. Mogilner, Mathematics of cell motility: have we got its number? (English). J. Math. Biol. 58(1–2) (2009). International Conference on Industrial and Applied Mathematics (Zurich, 2007), pp. 105–134Google Scholar
  103. 103.
    A. Mogilner, L. Edelstein-Keshet, Regulation of actin dynamics in rapidly moving cells: a quantitative analysis (English). Biophys. J. 83(3), 1237–1258 (2002)CrossRefGoogle Scholar
  104. 104.
    Y. Mori, A. Jilkine, L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J. 94(9), 3684–3697 (2008)ADSCrossRefGoogle Scholar
  105. 105.
    C. Nelson, Paluch, Ewa K, Nelson, Celeste M, Biais, Nicolas, Fabry, Ben, Moeller, Jens, Pruitt, Beth L, Wollnik, Carina, Kudryasheva, Galina and Rehfeldt, Florian, Federle, Walter, Mechanotransduction: use the force (s). BMC Biol., BioMed Central Ltd 13(1), 47 (2015). http://www.biomedcentral.com/1741-7007/13/47
  106. 106.
    L. Nirenberg, Topics in Nonlinear Functional Analysis, vol. 6 (American Mathematical Society, Providence, RI, 1974)zbMATHGoogle Scholar
  107. 107.
    I.L. Novak, B.M. Slepchenko, A. Mogilner, L.M. Loew, Cooperativity between cell contractility and adhesion. Phys. Rev. Lett. 93(26), 268109 (2004)Google Scholar
  108. 108.
    H. Ohtsuka, A concentration phenomenon around a shrinking hole for solutions of mean field equations. Osaka J. Math. 39, 395–407 (2002)MathSciNetzbMATHGoogle Scholar
  109. 109.
    J. Oliver, J. King, K. McKinlay, P. Brown, D. Grant, C. Scotchford, J. Wood, Thin-film theories for two-phase reactive flow models of active cell motion. Math. Med. Biol. 22(1), 53–98 (2005)zbMATHCrossRefGoogle Scholar
  110. 110.
    J.G. Orlandi, C. Blanch-Mercader, J. Brugués, J. Casademunt, Cooperativity of self-organized Brownian motors pulling on soft cargoes. Phys. Rev. E 82(6), 061903 (2010)Google Scholar
  111. 111.
    A. Pathak, V.S. Deshpande, R.M. McMeeking, A.G. Evans, The simulation of stress fibre and focal adhesion development in cells on patterned substrates (English). J. R. Soc. Interface 5(22), 507–524 (2008)CrossRefGoogle Scholar
  112. 112.
    B. Perthame, Growth, Reaction, Movement and Diffusion from Biology. Lecture Notes, University Paris 6 (2012)Google Scholar
  113. 113.
    C. Peskin, G. Odell, G. Oster, Cellular motions and thermal fluctuations - the Brownian ratchet (English). Biophys. J. 65(1), 316–324 (1993)ADSCrossRefGoogle Scholar
  114. 114.
    R. Poincloux, O. Collin, F. Lizárraga, M. Romao, M. Debray, M. Piel, P. Chavrier, Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc. Natl. Acad. Sci. U.S.A. 108(5), 1943–1948 (2011)ADSCrossRefGoogle Scholar
  115. 115.
    M. Prass, K. Jacobson, A. Mogilner, M. Radmacher, Direct measurement of the lamellipodial protrusive force in a migrating cell. J. Cell Biol. 174, 767–772 (2006)CrossRefGoogle Scholar
  116. 116.
    R.H. Pritchard, Y.Y. Shery Huang, E.M. Terentjev, Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Soft Matter 10(12), 1864–1884 (2014)ADSCrossRefGoogle Scholar
  117. 117.
    J. Prost, C. Barbetta, J.-F. Joanny, Dynamical control of the shape and size of Stereocilia and Microvilli. Biophys. J. 93(4), 1124–1133 (2007)ADSCrossRefGoogle Scholar
  118. 118.
    J. Prost, F. Jülicher, J. Joanny, Active gel physics. Nat. Phys. 11(2), 111–117 (2015)CrossRefGoogle Scholar
  119. 119.
    E.M. Purcell, Life at low Reynolds number. Am. J. Phys. 45(1), 3–11 (1977)ADSCrossRefGoogle Scholar
  120. 120.
    S. Rafelski, J. Theriot, Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics (English). Ann. Rev. Biochem. 73, 209–239 (2004)CrossRefGoogle Scholar
  121. 121.
    J. Ranft, J. Prost, F. Jülicher, J.-F. Joanny, Tissue dynamics with permeation. Eur. Phys. J. E. Soft Matter 35, 9723 (2012)CrossRefGoogle Scholar
  122. 122.
    P. Recho, L. Truskinovsky, Asymmetry between pushing and pulling for crawling cells. Phys. Rev. E 87(2), 022720 (2013)Google Scholar
  123. 123.
    P. Recho, L. Truskinovsky, Maximum velocity of self-propulsion for an active segment. Math. Mech. Solids (2015). http://mms.sagepub.com/content/early/2015/07/06/1081286515588675.abstract
  124. 124.
    P. Recho, T. Putelat, L. Truskinovsky, Contraction-driven cell motility. Phys. Rev. Lett. 111(10), 108102 (2013)Google Scholar
  125. 125.
    P. Recho, J.-F. Joanny, L. Truskinovsky, Optimality of contraction-driven crawling. Phys. Rev. Lett. 112(21), 218101 (2014)Google Scholar
  126. 126.
    P. Recho, T. Putelat, L. Truskinovsky, Mechanics of motility initiation and motility arrest in crawling cells. J. Mech. Phys. Solids 84, 469–505 (2015). Doi:http://dx.doi.org/10.1016/j.jmps.2015.08.006. Available at http://www.sciencedirect.com/science/article/pii/S0022509615300612
  127. 127.
    A.J. Ridley, M.A. Schwartz, K. Burridge, R.A. Firtel, M.H. Ginsberg, G. Borisy, J.T. Parsons, A.R. Horwitz, Cell migration: integrating signals from front to back. Science 302(5651), 1704–1709 (2003). eprint: http://www.sciencemag.org/content/302/5651/1704.full.pdf
  128. 128.
    T. Risler, Cytoskeleton and cell motility. (2011). arXiv:1105.2423 [physics.bio-ph]Google Scholar
  129. 129.
    W. Ronan, V.S. Deshpande, R.M. McMeeking, J.P. McGarry, Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion. Biomech. Model. Mechanobiol. 13(2), 417–435 (2014)CrossRefGoogle Scholar
  130. 130.
    A. Ros, R. Eichhorn, J. Regtmeier, T. Duong, P. Reimann, D. Anselmetti, Brownian motion - absolute negative particle mobility (English). Nature 436(7053), 928 (2005)Google Scholar
  131. 131.
    B. Rubinstein, M.F. Fournier, K. Jacobson, A.B. Verkhovsky, A. Mogilner, Actin-myosin viscoelastic flow in the keratocyte lamellipod (English). Biophys. J. 97(7), 1853–1863 (2009)ADSCrossRefGoogle Scholar
  132. 132.
    D. Saintillan, M.J. Shelley, Emergence of coherent structures and large-scale flows in motile suspensions. J. R. Soc. Interface 9(68), 571–585 (2012)CrossRefGoogle Scholar
  133. 133.
    G. Salbreux, J. Prost, J.F. Joanny, Hydrodynamics of cellular cortical flows and the formation of contractile rings. Phys. Rev. Lett. 103(5), 058102 (2009)Google Scholar
  134. 134.
    S. Sankararaman, S. Ramaswamy, Instabilities and waves in thin films of living fluids. Phys. Rev. Lett. 102(11), 118107 (2009)Google Scholar
  135. 135.
    C.H. Schreiber, M. Stewart, T. Duke, Simulation of cell motility that reproduces the force-velocity relationship (English). Proc. Natl. Acad. Sci. U.S.A. 107(20), 9141–9146 (2010)ADSCrossRefGoogle Scholar
  136. 136.
    U.S. Schwarz, M.L. Gardel, United we stand - integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Science 125(13), 3051–3060 (2012)CrossRefGoogle Scholar
  137. 137.
    U. Schwarz, S. Safran, Elastic interactions of cells. Phys. Rev. Lett. 88(4), 048102 (2002)Google Scholar
  138. 138.
    U. Schwarz, S. Safran, Physics of adherent cells. Rev. Mod. Phys. 85(3), 1327–1381 (2013)ADSCrossRefGoogle Scholar
  139. 139.
    J. Sedzinski, M. Biro, A. Oswald, J.-Y. Tinevez, G. Salbreux, E. Paluch, Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476(7361), 462–466 (2011)ADSCrossRefGoogle Scholar
  140. 140.
    T. Senba, T. Suzuki, Some structures of the solution set for a stationary system of chemotaxis. Adv. Math. Sci. Appl. 10(1), 191–224 (2000)MathSciNetzbMATHGoogle Scholar
  141. 141.
    D. Shao, W.-J. Rappel, H. Levine, Computational model for cell morphodynamics (English). Phys. Rev. Lett. 105(10), 108104 (2010)Google Scholar
  142. 142.
    M. Sheetz, J. Sable, H. Dobereiner, Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Ann. Rev. Biophys. Biomol. Struct. 35, 417–434 (2006)CrossRefGoogle Scholar
  143. 143.
    M. Shutova, C. Yang, J.M. Vasiliev, T. Svitkina, Functions of non-muscle myosin II in assembly of the cellular contractile system. PLoS One 7(7), e40814–e40814 (2012)ADSCrossRefGoogle Scholar
  144. 144.
    R. Simha, S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89(5), 058101_1–058101_4 (2002)Google Scholar
  145. 145.
    M.P. Stewart, J. Helenius, Y. Toyoda, S.P. Ramanathan, D.J. Muller, A.A. Hyman, Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469(7329), 226–230 (2011)ADSCrossRefGoogle Scholar
  146. 146.
    T. Stossel, On the crawling of animal-cells (English). Science 260(5111), 1086–1094 (1993)ADSCrossRefGoogle Scholar
  147. 147.
    K.M. Stroka, H. Jiang, S.-H. Chen, Z. Tong, D. Wirtz, S.X. Sun, K. Konstantopoulos, Water permeation drives tumor cell migration in confined microenvironments. Cell 157(3), 611–623 (2014)CrossRefGoogle Scholar
  148. 148.
    M. Struwe, G. Tarantello, On multivortex solutions in Chern-Simons gauge theory. Bollettino della Unione Matematica Italiana-B 1, 109–122 (1998)MathSciNetzbMATHGoogle Scholar
  149. 149.
    K. Tawada, K. Sekimoto, Protein friction exerted by motor enzymes through a weak-binding interaction. J. Theor. Biol. 150(2), 193–200 (1991)CrossRefGoogle Scholar
  150. 150.
    T. Thoresen, M. Lenz, M.L. Gardel, Reconstitution of contractile actomyosin bundles. Biophys. J. 100(11), 2698–2705 (2011)ADSCrossRefGoogle Scholar
  151. 151.
    J.-Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J.-F. Joanny, E. Paluch, Role of cortical tension in bleb growth. Proc. Natl. Acad. Sci. 106(44), 18581–18586 (2009)ADSCrossRefGoogle Scholar
  152. 152.
    E. Tjhung, A. Tiribocchi, D. Marenduzzo, M. Cates, A minimal physical model captures the shapes of crawling cells. Nat. Commun. 6 (2015)Google Scholar
  153. 153.
    E. Tjhung, D. Marenduzzo, M.E. Cates, Spontaneous symmetry breaking in active droplets provides a generic route to motility. Proc. Natl. Acad. Sci. U.S.A. 109(31), 12381–12386 (2012)ADSCrossRefGoogle Scholar
  154. 154.
    P.G. Torres, K. Doubrovinski, K. Kruse, Filament turnover stabilizes contractile cytoskeletal structures. Europhys. Lett. 91(6), 68003 (2010)Google Scholar
  155. 155.
    X. Trepat, M.R. Wasserman, T.E. Angelini, E. Millet, D.A. Weitz, J.P. Butler, J.J. Fredberg, Physical forces during collective cell migration. Nat. Phys. 5(6), 426–430 (2009)CrossRefGoogle Scholar
  156. 156.
    H. Turlier, B. Audoly, J. Prost, J.-F. Joanny, Furrow constriction in animal cell cytokinesis. Biophys. J. 106(1), 114–123 (2014)ADSCrossRefGoogle Scholar
  157. 157.
    B. Vanderlei, J.J. Feng, L. Edelstein-Keshet, A computational model of cell polarization and motility coupling mechanics and biochemistry. Multiscale Model. Simul. 9(4), 1420–1443 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    S.R.K. Vedula, M.C. Leong, T.L. Lai, P. Hersen, A.J. Kabla, C.T. Lim, B. Ladoux, Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl. Acad. Sci. U.S.A. 109, 12974–12979 (2012)ADSCrossRefGoogle Scholar
  159. 159.
    A. Verkhovsky, T. Svitkina, G. Borisy, Self-polarization and directional motility of cytoplasm. Curr. Biol. 9(1), 11–20 (1999)CrossRefGoogle Scholar
  160. 160.
    M. Vicente-Manzanares, D. Webb, A. Horwitz, Cell migration at a glance (English). J. Cell Sci. 118(21), 4917–4919 (2005)CrossRefGoogle Scholar
  161. 161.
    M. Vicente-Manzanares, X. Ma, R.S. Adelstein, A.R. Horwitz, Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10(11), 778–790 (2009)CrossRefGoogle Scholar
  162. 162.
    Y. Wang, E. Botvinick, Y. Zhao, M. Berns, S Usami, R. Tsien, S Chien, Visualizing the mechanical activation of Src. Nature 434(7036), 1040–1045 (2005)Google Scholar
  163. 163.
    Q. Wang, X. Yang, D. Adalsteinsson, T.C. Elston, K. Jacobson, M. Kapustina, M.G. Forest, Computational and modeling strategies for cell motility, in Biological and Medical Physics, Biomedical Engineering, ed. by N.V. Dokholyan (Springer, Heidelberg, 2012), pp. 257–296Google Scholar
  164. 164.
    H. Wolfenson, Y.I. Henis, B. Geiger, A.D. Bershadsky, The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil. Cytoskeleton 66(11), 1017–1029 (2009)CrossRefGoogle Scholar
  165. 165.
    C. Wolgemuth, Lamellipodial contractions during crawling and spreading. Biophys. J. 89(3), 1643–1649 (2005)ADSCrossRefGoogle Scholar
  166. 166.
    C.W. Wolgemuth, J. Stajic, A. Mogilner, Redundant mechanisms for stable cell locomotion revealed by minimal models. Biophys. J. 101(3), 545–553 (2011)ADSCrossRefGoogle Scholar
  167. 167.
    P.T. Yam, C.A. Wilson, L. Ji, B. Hebert, E.L. Barnhart, N.A. Dye, P.W. Wiseman, G. Danuser, J.A. Theriot, Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178(7), 1207–1221 (2007)CrossRefGoogle Scholar
  168. 168.
    F. Ziebert, I.S. Aranson, Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells. PloS One 8(5), e64511 (2013)Google Scholar
  169. 169.
    F. Ziebert, S. Swaminathan, I.S. Aranson, Model for self-polarization and motility of keratocyte fragments. J. R. Soc. Interface 9(70), 1084–1092 (2012)CrossRefGoogle Scholar
  170. 170.
    J. Zimmermann, C. Brunner, M. Enculescu, M. Goegler, A. Ehrlicher, J. Kaes, M. Falcke, Actin filament elasticity and retrograde flow shape the force-velocity relation of motile cells. Biophys. J. 102(2), 287–295 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.LMS, CNRS-UMR 7649, École Polytechnique, Route de SaclayPalaiseauFrance

Personalised recommendations