Advertisement

Understanding Resilience: A Spatio-temporal Vulnerability Assessment of a Population Affected by a Sudden Lack of Food

  • Thomas MünzbergEmail author
  • Marcus Wiens
  • Frank Schultmann
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR)

Abstract

Natural disasters such as massive floods and severe storms can lead to disorganizations of the food supply chain. A cutoff of the food supply chain is a worst case scenario in which the population is not able to buy food in stores for a couple of days. In this situation, the private food stock in households is the key self-helping capacity to cope with the effects of a sudden lack of food. In this paper a spatio-temporal vulnerability model is introduced to facilitate disaster preparedness and to enhance the understanding of resilience of the population in Germany. The model is indicator-based and uses the empirical data about the stock piling behavior of the population, statistical data about the population structure of different city districts, and the results of an expert survey to estimate the time-dependent vulnerability of a population derived from the continuous consumption of their private food stock. The paper includes a review about studies recently published about the empirical quantifications of food stocks in households in Germany and an evaluation of the expert survey. The model was applied to two cases of German cities to demonstrate and discuss its benefits.

Keywords

Resilience Coping capacity Indicator-based vulnerability assessment Spatio-temporal assessment Disaster relief Disaster management planning Lack of food Food supply disruption 

Notes

Acknowledgement

The research reported in this paper is part of the SEAK project that aims at developing a decision support framework to manage food supply chain disruptions. The SEAK project is funded by the security research program of the German Federal Ministry of Education and Research (BMBF) and we thank the BMBF for the funding support.

We would like to thank all representatives from the German authorities that participated on our workshop on “Disaster Management Planning for Food Shortages and Power Outages” in October 2014 at the Karlsruhe Institute of Technology (KIT), Germany.

References

  1. Adger N (2006) Vulnerability. Global Environ Chang 16:268–281CrossRefGoogle Scholar
  2. Akinyemi OM (2010) The Status and Barriers to the implementation and continuation of the school gardening projects in Germany, Nigeria and the United States of America: Obstacles, Strengths and Weaknesses. Doctoral Dissertation, WitzenhausenGoogle Scholar
  3. Amt für Stadtentwicklung und Statistik, Stadt Köln (2014) Haushaltsgröße bezogen auf die Stadtbezirke der Stadt Köln zum 31.12.2012. http://www.offenedaten-koeln.de/dataset/c9f17c17-a8b5–4f73–8710-76db2cfec601/resource/c9f17c17-a8b5-4f73-8710-76db2cfec601. Accessed 20 Nov 2014
  4. Anderson MB, Woodrow PT (1991, March) Reducing vulnerability to drought and famine: developmental approaches to relief. Disasters 15(1):43–54. doi:10.1111/j.1467-7717.1991.tb00426.xCrossRefGoogle Scholar
  5. Aubrecht C, Steinnocher K, Köstl M, Züger J, Loibl W (2013) Long-term spatio-temporal social vulnerability variation considering health-related climate change parameters particularly affecting elderly. Nat Hazards 68:1371–1384CrossRefGoogle Scholar
  6. Bankoff G, Frerks G, Hilhorst D (2004) Mapping vulnerability, disasters, development, and people. Earthscan Publications, LondonGoogle Scholar
  7. Belliveau S, Smit B, Bradshaw B (2006) Multiple exposures and dynamic vulnerability: evidence from the grape industry in the Okanagan Valley, Canada. Global Environ Chang 16:364–378CrossRefGoogle Scholar
  8. Birkmann J, Wisner B (2006) Measuring the un-measurable. The challenge of vulnerability. UNU Institute for Environment and Human Security (UNU-EHS), Source 5, BonnGoogle Scholar
  9. Bogardi JJ (2004) Hazards, risks and vulnerabilities in a changing environment: the unexpected onslaught on human security? Global Environ Chang 14:361–365CrossRefGoogle Scholar
  10. Brauner F, Münzberg T, Wiens M, Fiedrich F, Lechleuthner A, Schultmann F (2015) Critical infrastructure resilience: a framework for considering micro and macro observation levels. Proceedings of the international conference on information systems for crisis response and management—kristiansand, Norway, May 24–27, Palen, Büscher, Comes & Hughes, edsGoogle Scholar
  11. Brock III LG, Lauren BD (2015) Estimating available supermarket commodities for food bank collection in the absence of information. Expert Syst Appl 42(7):3450–3461CrossRefGoogle Scholar
  12. Brooks N (2003) Vulnerability, risk and adaptation: a conceptual framework, Tyndall centre for climate change, working paper 38, 16.Google Scholar
  13. Bruneau M, Chang S, Eguchi R, Lee G, O’Rourke T, Reinhorn A, Shinozuka M, Tierney K, Wallace W, von Winterfelt D (2003) A framework to quantitatively assess and enhance the seismic resilience of communities. EERI Spectra 19(4):733–752CrossRefGoogle Scholar
  14. Cardona OD (1999) Environmental Management and Disaster Prevention: Two Related Topics - A Holistic Risk Assessment and Management Approach. In: Ingleton J (ed) Nat Disaster Manag. Tudor Rose, LondonGoogle Scholar
  15. Chen P, Chen X (2012) Spatio-temporal variation of flood vulnerability at the Poyang Lake ecological economic zone, Jiangxi Province, China. Water Sci Technol 65(7):1332–1340CrossRefGoogle Scholar
  16. Debnath R (2013) An assessment of spatio-temporal pattern of urban earthquake vulnerability using GIS: a study on Dhaka City. Ann GIS 19(2):63–78.CrossRefGoogle Scholar
  17. Dilley M, Boudreau TE (2001) Coming to terms with vulnerability: a critique of the food security definition. Food Policy 26(3):229–247CrossRefGoogle Scholar
  18. Gaillard J (2010) Vulnerability, capacity and resilience: perspectives for climate and development policy. J Int Dev 22:218–232CrossRefGoogle Scholar
  19. Giupponi C, Giove S, Giannini V (2013) A dynamic assessment tool for exploring and communicating vulnerability to floods and climate change. Environ Model SC 44:136–147CrossRefGoogle Scholar
  20. Hufschmidt G (2011) A comparative analysis of several vulnerability concepts. Nat Hazards 58(2):621–643CrossRefGoogle Scholar
  21. Jacob B, Mawson AR, Payton M, Guignard JC (2008) Disaster mythology and fact: hurricane Katrina and social attachment. Public Health Rep 123(5):555–566Google Scholar
  22. Kasperson JX, Kasperson RE, Turner BL (1995) Regions at risk: comparisons of threatened environments. United Nations University Press, New YorkGoogle Scholar
  23. Kienberger S, Blaschke T, Zaidi RZ (2013) A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’. Nat Hazards 68:1343–1369Google Scholar
  24. Kommunale Statistikstelle Stadt Mannheim (2014) Anzahl und Struktur der Mannheimer Privathaushalte in kleinräumiger Gliederung Statistische Daten 2/2014, Mannheim, 2014. https://www.mannheim.de/sites/default/files/page/12213/d201402_privathaushalte_2013.pdf. Accessed 20 Nov 2014
  25. Manyena SB (2006) The concept of resilience revisited. Disasters 30(4):433–450CrossRefGoogle Scholar
  26. Menski U, Gardemann J (2008) Auswirkungen des Ausfalls Kritischer Infra-strukturen auf den Ernährungssektor am Beispiel des Stromausfalls im Münster-land im Herbst 2005, Empirische Untersuchung im Auftrag der Bundesanstalt für Landwirtschaft und Ernährung (BLE). http://www.hb.fh-muenster.de/opus/fhms/volltexte/2011/677/. Accessed 20 Nov 2014
  27. Metzger MJ, Schröter D (2006) Towards a spatially explicit and quantitative vulnerability assessment of environmental change in Europe. Reg Environ Change 6(4):201–216CrossRefGoogle Scholar
  28. Münzberg T, Wiens M, Schultmann F (2014) Dynamic-spatial vulnerability assessments: a methodical review for decision support in emergency planning for power outages, humanitarian technology: science, systems and global impact 2014, Hum Tech 2014. Procedia Eng 78:78–87CrossRefGoogle Scholar
  29. Münzberg T, Wiens M, Schultmann F (2015) The effect of coping capacity depletion on critical infrastructure resilience. Proceedings of the international conference on information systems for crisis response and management—kristiansand, Norway, May 24–27, Palen, Büscher, Comes & Hughes, edsGoogle Scholar
  30. Ohder C, Röpcke J, Sticher B, Geißler S, Schweer B (2014) Hilfebedarf und Hilfebereitschaft bei anhaltendem Stromausfall, Ergebnisse einer Bürgerbefragung in drei Berliner BezirkenGoogle Scholar
  31. Pan American Health Organization (2001) Humanitarian supply management and logistics in the health sector. PAHO, Washington, D.C.Google Scholar
  32. Pant R, Barker K, Zobel C (2014) Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors. Reliab Eng Syst Safe 125:92–102CrossRefGoogle Scholar
  33. Patt AG, Schröter D (2008) Perceptions of climate risk in Mozambique: implications for the success of adaptation strategies. Global Environ Chang 18(3):458–467CrossRefGoogle Scholar
  34. Rasche J, Schmidt A, Schneider S, Waldtmann S (2000) Organisation der Ernährungsnotfallvorsorge, Schriftenreihe der Schutzkommision beim Bundesmi-nister des Innern, Neue Folge B and 47. http://www.bsl-mb.com/fileadmin/user_upload/pdf-beitraege-mitarbeiter/Zivilschutzforschung_Band_47.pdf
  35. Rhein S (2013) Kapazitäten der Bevölkerung zur Bewältigung eines lang anhalten-den flächendeckenden Stromausfalles, Empirische Untersuchung für das Bezugs-gebiet Deutschland. http://www.bbk.bund.de/SharedDocs/Downloads/BBK/DE/Publikationen/Praxis_Bevoelkerungsschutz/Band_12_PraxisBS_Stromausfall.pdf?__blob=publicationFile
  36. Rodríguez-Gaviria EM, Botero-Fernández V (2013) Flood vulnerability assessment: a multiscale, multitemporal and multidisciplinary approach. J Earth Sci Eng 2:102–108Google Scholar
  37. Sahin O, Mohamed S (2010) Coastal vulnerability to sea level rise: a spatio-temporal decision making tool. Proceedings of the 2010 IEEE international conference on industrial engineering and engineering management, 29 Oct—31 Oct 2010, Xiamen, ChinaGoogle Scholar
  38. Sobiech C (2013) Agent-based simulation of vulnerability dynamics, a case study of the German North Sea Coast, 2013: Springer ThesesGoogle Scholar
  39. Thywissen K (2006) Components of risk: a comparative glossary, publication series of UNU-EHS, Source 2Google Scholar
  40. Wright M, Vesala-Husemann M (2006) Nutrition and disaster preparedness: focusing on vulnerability, building capacities. J Issues Nurs 11(3) Manuscript 5. doi:10.3912/OJIN.Vol11No03Man05Google Scholar
  41. Zobel C, Khansa L (2014) Characterizing multi-event disaster resilience. Comput Oper Res (special issue on MCDM in emergency management) 42:83–94Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Münzberg
    • 1
    Email author
  • Marcus Wiens
    • 2
  • Frank Schultmann
    • 2
  1. 1.Institute for Nuclear and Energy TechnologiesKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute for Industrial ProductionKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations