Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 39))

  • 844 Accesses

Abstract

The hypothesis that foci that are visualized with fMRI are signs of hubs rather than modules can be tested by combining hemodynamic imaging (Buxton, Introduction to functional magnetic resonance imaging: principles and techniques, Cambridge University Press, Cambridge, 2001, [1]) with EEG imaging (Barlow, The electroencephalogram: its patterns and origins, MIT Press, Cambridge, 1993, [2], Pfurtscheller, Functional brain imaging. Hans Huber Publishers, Lewiston, 1988, [3]) and MEG (Hamalainen, JAMA, Rev Mod Phys 65:413–497, 1993, [4]). Experimental data indicate that the necessary macroscopic frames with beta-gamma carrier frequencies are readily found in human volunteers engaged in cognitive tasks by several research groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buxton RB (2001) Introduction to functional magnetic resonance imaging: principles and techniques. Cambridge University Press, Cambridge

    Google Scholar 

  2. Barlow JS (1993) The electroencephalogram: its patterns and origins. MIT Press, Cambridge

    Google Scholar 

  3. Pfurtscheller G, Lopes da Silva FH (eds) (1988) Functional brain imaging. Hans Huber Publishers, Lewiston

    Google Scholar 

  4. Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  5. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118(11):2317–2331

    Article  Google Scholar 

  6. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    Article  Google Scholar 

  7. Stam CJ (2010) Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. Int J Psychophysiol 77(3):186–194

    Article  Google Scholar 

  8. Bressler S, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14:277–290

    Article  Google Scholar 

  9. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    Google Scholar 

  10. Kozma R, Freeman WJ (2014) On neural substrates of cognition: theory, experiments and application in brain computer interfaces. In: IEEE biomedical science and engineering center conference (BSEC), Annual Oak Ridge National Laboratory, pp 1–4

    Google Scholar 

  11. Hillebrand A, Stam CJ (2014) In magnetoencephalography. Recent developments in MEG network analysis. Springer, Berlin, pp 263–277

    Google Scholar 

  12. Freeman WJ, Burke BC, Holmes MD (2003) Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Mapp 19(4):248–272

    Article  Google Scholar 

  13. Demiralp T, Bayraktaroglu Z, Lenz D, Junge S, Busch NA, Maess B, Herrmann CS (2007) Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int J Psychophysiol 64(1):24–30

    Article  Google Scholar 

  14. Ramon C, Freeman WJ, Holmes M, Ishimaru A, Haueisen J, Schimpf PH, Rezvanian E (2009) Similarities between simulated spatial spectra of scalp EEG MEG and structural MRI. Brain Topogr 22(3):191–196

    Article  Google Scholar 

  15. Berthouze L, James LM, Farmer SF (2010) Human EEG shows long-range temporal correlations of oscillation amplitude in theta, alpha and beta bands across a wide age range. Clin Neurophysiol 121(8):1187–1197

    Article  Google Scholar 

  16. Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci 107(42):18179–18184

    Article  Google Scholar 

  17. Ruiz Y, Pockett S, Freeman WJ, Gonzales E, Guang Li (2010) A method to study global spatial patterns related to sensory perception in scalp EEG. J Neurosci Methods 191:110–118

    Article  Google Scholar 

  18. Freeman WJ (2015) Perspectives: mechanism and significance of global coherence in scalp EEG. In: Buzsaki G, Freeman WJ (eds) current opinion in neurobiology 31: brain rhythms and coordination, pp 199–207

    Google Scholar 

  19. Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single-neurons in the human brain. Nature 435:1102–1107

    Article  Google Scholar 

  20. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  Google Scholar 

  21. Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New York

    Book  Google Scholar 

  22. Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A (2003) Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol Cybern 88:395–408

    Article  MATH  Google Scholar 

  23. Lettvin JY (1995) J Y Lettvin on grandmother cells. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge

    Google Scholar 

  24. Freeman WJ, Quian Quiroga R (2013) Imaging brain function with EEG: advanced temporal and spatial analysis of electroencephalographic and electrocorticographic signals. Springer, New York

    Book  Google Scholar 

  25. Pribram KH (1991) Brain and perception: holonomy and structure in figural processing. Psychology Press, New York

    Google Scholar 

  26. Balister P, Bollobas B, Johnson JR, Walters M (2010) Random majority percolation. Random Struct Algorithms 36(3):315–340

    MathSciNet  MATH  Google Scholar 

  27. Kozma R, Puljic M (2015) Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr Opin Neurobiol 31:181–188

    Article  Google Scholar 

  28. Wang XF, Chen G (2002) Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans Circuits Syst Fund Theory Appl 49:54–62

    Article  MathSciNet  Google Scholar 

  29. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. PNAS 103(51):19518–19523

    Article  Google Scholar 

  30. Critchley EM (1979) Drug-induced neurological disease. BMJ 1(6167):862–865

    Article  Google Scholar 

  31. Freeman WJ, Kozma R, Bollobas B, Riordan O (2009) Scale-free cortical planar network. In: Bollobas B, Kozma R, Miklos D (eds) In: Handbook of large-scale random networks, Bolyai Mathematical Studies. Springer, New York, pp 277–324

    Google Scholar 

  32. Ojemann GA (2003) The neurobiology of language and verbal memory: observations from awake neurosurgery. Int J Psychophysiol 48(2):141–146

    Article  Google Scholar 

  33. Freeman WJ (2003) The wave packet: an action potential for the 21st century. J Integr Neurosci 2:3–30

    Article  Google Scholar 

  34. Werner G (2007) Metastability, criticality, and phase transitions in brains and its models. BioSystems 90(496–508):2007

    Google Scholar 

  35. Steyn-Ross DA, Steyn-Ross ML (eds) (2010) Modeling phase transitions in the brain. Springer series computational neuroscience, vol 4. Springer, Berlin

    Google Scholar 

  36. Rabinovich MI, Friston KJ, Varona P (eds) (2012) Principles of brain dynamics. MIT Press, Cambridge

    Google Scholar 

  37. Tognoli E, Kelso JAS (2014) The metastable brain. Neuron 81(1):35–48

    Article  Google Scholar 

  38. Von Neumann J (1958) The computer and the brain. Yale University Press, New Haven

    MATH  Google Scholar 

  39. Erdi P, Kozma R, Puljic M, Szente J (2013) Neuropercolation and related models of criticalities. In: European meeting of statisticians Hungary contents, p 106

    Google Scholar 

  40. Sornette D, Quillon G (2012) Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur Phys J Spec Top 205(1):1–26

    Article  Google Scholar 

  41. Pisarenko VF, Sornette D (2012) Robust statistical tests of Dragon-Kings beyond power law distributions. Eur Phys J Spec Top 205(1):95–115

    Article  Google Scholar 

  42. Freeman WJ (2009) Deep analysis of perception through dynamic structures that emerge in cortical activity from self-regulated noise. Cogn Neurodyn 3(1):105–116

    Article  Google Scholar 

  43. Freeman WJ, Holmes MD, West GA, Vanhatalo S (2006) Fine spatiotemporal structure of phase in human intracranial EEG. Clin Neurophysiol 117:1228–1243

    Article  Google Scholar 

  44. Freeman WJ (2007) Proposed cortical “shutter” mechanism in cinematographic perception. In: Perlovsky L, Kozma R (eds) Neurodynamics of cognition and consciousness. Springer, Heidelberg, pp 11–38

    Chapter  Google Scholar 

  45. Kozma R, Davis JJ, Freeman WJ (2012) Synchronization of de-synchronization events demonstrate large-scale cortical singularities as hallmarks of higher cognitive activity. J Neurosci Neuro-Eng 1(1):13–23

    Article  Google Scholar 

  46. Freeman WJ (1975/2004) Mass action in the nervous system. Academic Press, New York. Electronic version 2004—http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html

    Google Scholar 

  47. Freeman WJ, Chang H-J, Burke BC, Rose PA, Badler J (1997) Taming chaos: stabilization of aperiodic attractors by noise. IEEE Trans Circuits Syst 44:989–996

    Article  MathSciNet  Google Scholar 

  48. Kozma R (2003) On the constructive role of noise in stabilizing itinerant trajectories on chaotic dynamical systems. Chaos 11(3):1078–1090

    Article  MathSciNet  MATH  Google Scholar 

  49. Kozma R, Freeman WJ (2001) Chaotic resonance: methods and applications for robust classification of noisy and variable patterns. Int J Bifurc Chaos 10:2307–2322

    Google Scholar 

  50. Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92:367–379

    Article  MathSciNet  MATH  Google Scholar 

  51. Freeman WJ, Burke BC (2003) A neurobiological theory of meaning in perception. Part 4. multicortical patterns of amplitude modulation in gamma EEG. Int J Bifurc Chaos 13:2857–2866

    Article  MATH  Google Scholar 

  52. Kozma R, Freeman WJ, Lin CT (2013) Optimizing EEG/EMG signal/noise ratio, Society for Neuroscience, Abstract 6555, San Diego, 9–13 Nov, San Diego

    Google Scholar 

  53. Chua LO, Roska T (1993) The CNN paradigm. IEEE Trans Circuits Syst I: Fundam Theory Appl 40(3):147–156

    Article  MATH  Google Scholar 

  54. Kozma R, Puljic M (2013) Hierarchical random cellular neural networks for system-level brain-like signal processing. Neural Netw 45:101–110

    Article  MATH  Google Scholar 

  55. Srinivasa N, Cruz-Albrecht JM (2012) Neuromorphic adaptive plastic scalable electronics: analog learning systems. Pulse, IEEE 3(1):51–56

    Article  Google Scholar 

  56. Kozma R, Pino R, Pazienza G (eds) (2012) Advances in neuromorphic memristor science and applications. Springer, Heidelberg

    Google Scholar 

  57. Sillin HO, Aguilera R, Shieh HH, Avizienis AV, Aono M, Stieg AZ, Gimzewski JK (2013) A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24(38):384004

    Article  Google Scholar 

  58. Stieg AZ, Avizienis AV, Sillin HO, Aguilera R, Shieh HH, Martin-Olmos C, Gimzewski JK (2014) Self-organization and emergence of dynamical structures in neuromorphic atomic switch networks. Memristor networks. Springer International Publishing, Switzerland, pp 173–209

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kozma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kozma, R., Freeman, W.J. (2016). Summary of Main Arguments. In: Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields. Studies in Systems, Decision and Control, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-24406-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24406-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24404-4

  • Online ISBN: 978-3-319-24406-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics