Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 39))

  • 852 Accesses

Abstract

Brain activity can be interpreted in terms of dynamic system theory Freeman, Sci Am, 264(2):78–85, 1991 [1], Hoppensteadt, Izhkevich, BioSystem, 48:85–94, 1998 [2], Korn, Faure, C R Biol, 326:787–840, 2003 [3], in particular using models of transient dynamics Rabinovich, Abarbanel, Neuroscience 87(1):5–14, 1998 [4], Kaneko, Tsuda, Complex systems: chaos and beyond. A constructive approach with applications in life sciences. Springer, Berlin, 2001 [5], Steyn-Ross, Steyn-Ross (eds) Modeling phase transitions in the brain, Springer, Berlin, 2010 [6]. Some models utilize encoding in complex cycles and chaotic attractors Aihara et al. Phys Lett A 144:333–340, 1990 [7], Andreyev et al. Int J Bifurc Chaos 6(4):627–646, 1996 [8], Borisyuk, Borisyuk, Biosystems 40(1–2):3–10, 1997 [9]. A hierarchical approach to neural dynamics is formulated as the Freeman K model Freeman, Mass action in the nervous system. Academic, New York, 1975/2004 [10], Freeman, How brains make up their minds. Columia UP, New York, 2001 [11], which is based on studying olfaction, and later generalized to other sensory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman WJ (1991) The physiology of perception. Sci Am 264(2):78–85

    Article  Google Scholar 

  2. Hoppensteadt FC, Izhkevich EM (1998) Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? BioSystem 48:85–94

    Article  Google Scholar 

  3. Korn H, Faure P (2003) Is there chaos in the brain? II. Experimental evidence and related models. C R Biol 326:787–840

    Article  Google Scholar 

  4. Rabinovich MI, Abarbanel HDI (1998) The role of chaos in neural systems. Neuroscience 87(1):5–14

    Article  Google Scholar 

  5. Kaneko K, Tsuda I (2001) Complex systems: chaos and beyond. A constructive approach with applications in life sciences. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Steyn-Ross DA, Steyn-Ross ML (eds) (2010) Modeling phase transitions in the brain, Springer series in computational neuroscience, vol 4. Springer, Berlin

    Google Scholar 

  7. Aihara K, Takabe T, Toyoda M (1990) Chaotic neural network. Phys Lett A 144:333–340

    Article  MathSciNet  Google Scholar 

  8. Andreyev YV, Dimitriev AS, Kuminov DA (1996) 1-D maps, chaos and neural networks for information processing. Int J Bifurc Chaos 6(4):627–646

    Article  MATH  Google Scholar 

  9. Borisyuk RM, Borisyuk GN (1997) Information coding on the basis of synchronization neuronal activity. Biosystems 40(1–2):3–10

    Article  Google Scholar 

  10. Freeman WJ (1975/2004) Mass action in the nervous system. Academic, New York. Electronic version 2004. http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html

    Google Scholar 

  11. Freeman WJ (2001) How brains make up their minds. Columbia UP, New York

    Google Scholar 

  12. Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10:161–195

    Article  Google Scholar 

  13. Emery JD, Freeman WJ (1969) Pattern analysis of cortical evoked potential parameters during attention changes. Physiol Behav 4:67–77

    Article  Google Scholar 

  14. Freeman WJ (1979) Nonlinear dynamics of paleocortex manifested in the olfactory EEG. Biol Cybern 35:21–37

    Article  Google Scholar 

  15. Freeman WJ, Baird B (1987) Relation of olfactory EEG to behavior: spatial analysis. Behav Neurosci 101(3):393

    Article  Google Scholar 

  16. Freeman WJ, Ahlfors SM, Menon V (2009) Combining EEG, MEG and fMRI signals to characterize mesoscopic patterns of brain activity related to cognition. Special Issue (Lorig TS ed) Int J Psychophysiol 73(1): 43–52

    Google Scholar 

  17. Hartline HK, Ratliff F (1958) Spatial summation of inhibitory influences in the eye of Limulus and the mutual interaction of receptor units. J Gen Physiol 41:1049–1066

    Article  Google Scholar 

  18. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  Google Scholar 

  19. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  Google Scholar 

  20. Quian Quiroga R, Panzeri S (2009) Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 10:173–185

    Article  Google Scholar 

  21. Freeman WJ (2007) Proposed cortical “shutter” mechanism in cinematographic perception. In: Perlovsky L, Kozma R (eds) Neurodynamics of cognition and consciousness. Springer, Heidelberg, pp 11–38

    Chapter  Google Scholar 

  22. Freeman WJ, Kozma R, Vitiello G (2012) Adaptation of the generalized Carnot cycle to describe thermodynamics of cerebral cortex. In: The 2012 international joint conference on neural networks (IJCNN). IEEE, pp 1–8

    Google Scholar 

  23. Kozma R, Puljic M, Freeman WJ (2012) Thermodynamic model of criticality in the cortex based on EEG/ECoG data. arXiv preprint arXiv:1206.1108

  24. Freeman WJ, Quian Quiroga R (2013) Imaging brain function with EEG: advanced temporal and spatial analysis of electroencephalographic and electrocorticographic signals. Springer, New York

    Book  Google Scholar 

  25. Rabinovich MI, Friston KJ, Varona P (eds) (2012) Principles of brain dynamics. MIT Press, Cambridge

    Google Scholar 

  26. Rabinovich MI, Sokolov Y, Kozma R (2014) Robust sequential working memory recall in heterogeneous cognitive networks. Front Syst Neurosci 8:220

    Article  Google Scholar 

  27. Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–847

    Article  Google Scholar 

  28. Haken H (1983) Synergetics: an introduction. Springer, Berlin

    Book  MATH  Google Scholar 

  29. Bressler SL, Kelso JA (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5(1):26–36

    Article  Google Scholar 

  30. Kelso JAS, Engstrom DA (2006) The complementary nature. MIT Press, Cambridge

    Google Scholar 

  31. Tognoli E, Kelso JAS (2014) The metastable brain. Neuron 81(1):35–48

    Article  Google Scholar 

  32. Freeman WJ (2003) The wave packet: an action potential for the 21st century. J Integr Neurosci 2:3–30

    Article  Google Scholar 

  33. Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92:367–379

    Article  MathSciNet  MATH  Google Scholar 

  34. Werner G (2007) Metastability, criticality, and phase transitions in brains and its models. BioSystems 90(496–508):2007

    Google Scholar 

  35. Freeman WJ (2008) A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics. Neural Netw 21:257–265

    Article  Google Scholar 

  36. Freeman WJ, Holmes MD, West GA, Vanhatalo S (2006) Fine spatiotemporal structure of phase in human intracranial EEG. Clin Neurophysiol 117:1228–1243

    Article  Google Scholar 

  37. Bak P (1996) How nature works the science of self-organized criticality. Springer, New York

    MATH  Google Scholar 

  38. Jensen HJ (1998) Self-organized criticality: emergent complex behavior in physical and biological systems. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  39. Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23(35):11167–11177

    Google Scholar 

  40. Beggs JM (2008) The criticality hypothesis: how local cortical networks might optimize information processing. Philos Trans R Soc A: Math, Phys Eng Sci 366(1864):329–343

    Article  MathSciNet  MATH  Google Scholar 

  41. Haldeman C, Beggs JM (2005) Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys Rev Lett 94(5):058101

    Article  Google Scholar 

  42. Sornette D, Quillon G (2012) Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur Phys J Special Top 205(1):1–26

    Article  Google Scholar 

  43. Puljic M, Kozma R (2005) Activation clustering in neural and social networks. Complexity 10(4):42–50

    Article  MathSciNet  Google Scholar 

  44. Erdi P, Kozma R, Puljic M, Szente J (2013) Neuropercolation and related models of criticalities. In: Contents XXIX-th European meeting of statisticians, Hungary, p 106

    Google Scholar 

  45. Kozma R, Puljic M (2015) Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr Opin Neurobiol 31:181–188

    Article  Google Scholar 

  46. Zamora-Lopez G, Zhou C, Kurths J (2011) Exploring brain function from anatomical connectivity. Front Neurosci 5

    Google Scholar 

  47. Freeman WJ, Kozma R, Bollobas B, Riordan O (2009) Chapter 7. Scale-free cortical planar network. In: Bollobas B, Kozma R, Miklos D (eds) Handbook of large-scale random networks. Series: Bolyai mathematical studies, vol 18. Springer, New York, pp 277–324

    Google Scholar 

  48. Freeman WJ, Vitiello G (2010) Vortices in brain waves. Int J Mod Phys B 24(17):3269–3295

    Article  MathSciNet  MATH  Google Scholar 

  49. Freeman WJ, Burke BC, Holmes MD (2003) Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Mapp 19(4):248–272

    Article  Google Scholar 

  50. Kozma R, Freeman WJ (2008) Intermittent spatio-temporal de-synchronization and sequenced synchrony in ECoG signals. Chaos 18:037131

    Article  Google Scholar 

  51. Freyer F, Aquino K, Robinson PA, Ritter P, Breakspear M (2009) Bistability and non-Gaussian fluctuations in spontaneous cortical activity. J Neurosci 29(26):8512–8524

    Article  Google Scholar 

  52. Rice SO (1950) Mathematical analysis of random noise and appendixes. Technical Publications Monograph B-1589. Bell Telephone Labs Inc, New York

    Google Scholar 

  53. Freeman WJ (2009) Deep analysis of perception through dynamic structures that emerge in cortical activity from self-regulated noise. Cogn Neurodyn 3(1):105–116

    Article  Google Scholar 

  54. Ruiz Y, Pockett S, Freeman WJ, Gonzales E, Guang Li (2010) A method to study global spatial patterns related to sensory perception in scalp EEG. J Neurosci Methods 191:110–118

    Article  Google Scholar 

  55. Freeman WJ, Kozma R (2010) Freeman’s mass action. Scholarpedia 5(1):8040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kozma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kozma, R., Freeman, W.J. (2016). Interpretation of Experimental Results As Cortical Phase Transitions. In: Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields. Studies in Systems, Decision and Control, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-24406-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24406-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24404-4

  • Online ISBN: 978-3-319-24406-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics