Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 39))

  • 819 Accesses

Abstract

The purpose of this short chapter is to advance our understanding of the functional actions that occur between different areas of the mammalian neocortex. This topic is of immense importance to the question of the neural basis of cognition, both in animals and humans. For example, one conceptual framework that has emerged over many years describes cognitive function in terms of actions between areas in large-scale networks of the neocortex, or neurocognitive networks Bressler Neurocogn Netw Schol, 3:1567, 2008, [37], Mesulam, Brain, 121:1013–1052, 1998 [38], Bressler, Neurocogn Netw Schol, 3:1567, 2008 [12], Meehan T, Bressler, Neurosci Biobehav Rev, 36:2232–2247, 2012 [36]. It posits the neocortical area as a computational processing entity in the brain, and the large-scale structure of anatomical pathways connecting those areas as the connectivity matrix that determines the interareal actions underlying the cortical computations of a species. The inhomogeneity of the large-scale cortical connectivity suggests that the neocortex is not a homogeneous computational medium and that interareal cortical connectivity is important for cortical function. The neurocognitive network framework is directly linked to the idea that cognition is a collective phenomena that emerges from the actions exerted between cortical areas. In short, the nature of cognition in the human brain is intimately tied to an understanding of how cortical areas act upon one another, and how those actions lead to emergent neurocognitive phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeles M, Bergman H, Margalit E, Vaadia E (1993) Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70:1629–1638

    Google Scholar 

  2. Aertsen A, Arndt M (1993) Response synchronization in the visual cortex. Curr Opin Neurobiol 3:586–594

    Article  Google Scholar 

  3. Aertsen A, Gerstein GL (1985) Evaluation of neuronal connectivity: sensitivity of cross-correlation. Brain Res 340:341–354

    Article  Google Scholar 

  4. Ahissar E, Vaadia E, Ahissar M, Bergman H, Arieli A, Abeles M (1992) Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257:1412–1414

    Article  Google Scholar 

  5. Alle H, Geiger JRP (2006) Combined analog and action potential coding in hippocampal mossy fibers. Science 311:1290–1293

    Article  Google Scholar 

  6. Barbas H (1993) Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey. Neuroscience 56:841–864

    Article  Google Scholar 

  7. Barbas H (2000) Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 52:319–330

    Article  Google Scholar 

  8. Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology. Perception 1:371–394

    Article  Google Scholar 

  9. Bosman CA, Schoffelen J-M, Brunet N, Oostenveld R, Bastos AM, Womelsdorf T, Rubehn B, Stieglitz T, De Weerd P, Fries P (2012) Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75:875–888

    Google Scholar 

  10. Bressler SL (1987a) Relation of olfactory bulb and cortex. I. Spatial variation of bulbocortical interdependence. Brain Res 409:285–293

    Article  Google Scholar 

  11. Bressler SL (1987b) Relation of olfactory bulb and cortex. II. Model for driving of cortex by bulb. Brain Res 409:294–301

    Article  Google Scholar 

  12. Bressler SL (2008) Neurocognitive netw Schol 3:1567

    Google Scholar 

  13. Bressler SL, Coppola R, Nakamura R (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366:153–156

    Article  Google Scholar 

  14. Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101:9849–9854

    Article  Google Scholar 

  15. Bullier J, Munk MHJ, Nowak LG (1992) Synchronization of neuronal firing in areas V1 and V2 of the monkey. Soc Neurosci Abstr 18(11):7

    Google Scholar 

  16. Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862

    Article  Google Scholar 

  17. Carrasco A, Lomber SG (2010) Reciprocal modulatory influences between tonotopic and nontonotopic cortical fields in the cat. J Neurosci 30:1476–1487

    Article  Google Scholar 

  18. Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83:1550–1566

    Google Scholar 

  19. Dehaene S, Naccache L (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79:1–37

    Article  Google Scholar 

  20. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W et al (1988) Coherent oscillations: a mechanism for feature linking in the visual cortex. Biol Cybern 60:121–130

    Article  Google Scholar 

  21. Engel AK, Kreiter AK, Konig P, Singer W (1991) Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc Natl Acad Sci USA 88:6048–6052

    Google Scholar 

  22. Engel AK, Konig P, Kreiter AK, Singer W (1991) Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252:1177–1179

    Article  Google Scholar 

  23. Fan J, Posner M (2004) Human attentional networks. Psychiatr Prax 31:S210–S214

    Article  Google Scholar 

  24. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  25. Freeman WJ (2005) A field-theoretic approach to understanding scale-free neocortical dynamics. Biol Cybern 92:350–359

    Article  MathSciNet  MATH  Google Scholar 

  26. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  Google Scholar 

  27. Funahashi S, Inoue M (2000) Neuronal interactions related to working memory processes in the primate prefrontal cortex revealed by cross-correlation analysis. Cereb Cortex 10:535–551

    Article  Google Scholar 

  28. Fuster JM, Bauer RH, Jervey JP (1985) Functional interactions between inferotemporal and prefontal cortex in a cognitive task. Brain Res 330:299–307

    Article  Google Scholar 

  29. Horwitz B, Braun AR (2004) Brain network interactions in auditory, visual and linguistic processing. Brain Lang 89:377–384

    Article  Google Scholar 

  30. Hupé JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787

    Article  Google Scholar 

  31. Hupé JM, James AC, Girard P, Lomber SG, Payne BR, Bullier J (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85:134–145

    Google Scholar 

  32. Jia X, Tanabe S, Kohn A (2013) Gamma and the coordination of spiking activity in early visual cortex. Neuron 77:762–774

    Article  Google Scholar 

  33. Kruger L, Otis TS (2007) With withered Golgi? A retrospective evaluation of reticularist and synaptic constructs. Brain Res Bull 72:201–207

    Article  Google Scholar 

  34. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  Google Scholar 

  35. Lopes da Silva F (2013) EEG and MEG: relevance to neuroscience. Neuron 80:1112–1128

    Article  Google Scholar 

  36. Meehan T, Bressler SL (2012) Neurocognitive networks: findings, models, and theory. Neurosci Biobehav Rev 36:2232–2247

    Article  Google Scholar 

  37. Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613

    Article  Google Scholar 

  38. Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052

    Article  Google Scholar 

  39. Nelson JI, Salin PA, Munk MHJ, Arzi M, Bullier J (1992) Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. Vis Neurosci 9:21–38

    Article  Google Scholar 

  40. Nowak LG, Munk MHJ, Chounlamountri N, Bullier J (1994) Temporal aspects of information processing in areas V1 and V2 of the macaque monkey. In: Pantev C (ed) Oscil Event-Related Brain Dyn. Plenum Press, New York, pp 85–98

    Chapter  Google Scholar 

  41. Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit between frontal and parietal cortex. Nature 453:406–409

    Article  Google Scholar 

  42. Quintana J, Fuster JM, Yajeya J (1989) Effects of cooling parietal cortex on prefrontal units in delay tasks. Brain Res 503:100–110

    Article  Google Scholar 

  43. Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb Cortex 10:851–865

    Article  Google Scholar 

  44. Riehle A, Grun S, Diesmann M, Aertsen A (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278:1950–1953

    Article  Google Scholar 

  45. Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P, De Weerd P (2013) Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron 78:523–536

    Article  Google Scholar 

  46. Roe AW, Tso DY (1992) Functional connectivity between V1 and V2 in the primate. Soc Neurosci Abstr 18(11):4

    Google Scholar 

  47. Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316(5831):1612–1615

    Article  Google Scholar 

  48. Salazar RF, Dotson NM, Bressler SL, Gray CM (2012) Content-specific fronto-parietal synchronization during visual working memory. Science 338:1097–1100

    Article  Google Scholar 

  49. Sandell JH, Schiller PH (1982) Effect of cooling area 19 on striate cortex cells in the squirrel monkey. J Neurophysiol 48:38–48

    Google Scholar 

  50. Shepherd GM (1991) Found neuron doctrine. Oxford University Press, New York

    Google Scholar 

  51. Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA (2006) Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441:761–765

    Article  Google Scholar 

  52. Singer W (1994) Coherence as an organizing principle of cortical functions. Int Rev Neurobiol 37:153–183

    Article  Google Scholar 

  53. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  Google Scholar 

  54. Smith MA, Jia X, Zandvakili Kohn A (2013) Laminar dependence of neuronal correlations in visual cortex. J Neurophysiol 109:940–947

    Article  Google Scholar 

  55. von Stein A, Chiang C, Konig P (2000) Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci USA 97:14753–14758

    Google Scholar 

  56. Young MP (2000) The architecture of visual cortex and inferential processes in vision. Spat Vis 13:137–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Bressler .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bressler, S.L. (2016). Commentary by Steven L. Bressler. In: Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields. Studies in Systems, Decision and Control, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-24406-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24406-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24404-4

  • Online ISBN: 978-3-319-24406-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics