Skip to main content

Phytoplasmas and Their Insect Vectors: Implications for Date Palm

  • Chapter
  • First Online:
Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges

Abstract

Phytoplasmas are transmitted chiefly by insects, most commonly planthoppers and leafhoppers. Molecular genetic analyses have improved the understanding of phytoplasma taxonomy, and also enhanced the ability to identify phytoplasmas detected in hosts and insect vectors. Date palm is affected by Al-Wijam disease in Saudi Arabia and molecularly indistinguishable phytoplasmas (16SrI group) were recovered from affected palms and from Cicadulina bipunctata, an insect commonly found on the palms. The phytoplasma that is associated with the lethal yellowing disease in coconut palm (16SrIV-A) can also infect date palm. In the Americas lethal yellowing is likely to be transmitted by Haplaxius crudus (formerly Myndus crudus). Texas phoenix decline is reported from warm regions of South-East USA and may be transmitted by two species of Derbidae. Phytoplasmas belonging to the 16SrIV-F and 16SrXIV groups have also been identified from date palm growing in the USA and Africa respectively, though vectors have not been identified. Preventing spread in infected vegetative planting material and of vectors is key to limiting the impact of phytoplasma diseases. Management in affected areas can use antibiotics on high value trees, but this is not economical for extensive crops. In these situations, vector control by insecticide use or habitat management can be useful, but the long lifespan of individual palms means that even low vector pressure can lead to infection over successive years. The development of resistant varieties and replanting is the most effective long-term approach developed so far for phytoplasma disease management in this plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulsalam, K., Nageeb, M., Rezk, M., & Abdel-Megeed, M. (1992). Survey of certain fungi associated with Wijamed date palm trees in Al-Hassa Oasis of Saudi Arabia. Annals of Agricultural Science (Ain Shams University, Egypt), 37, 603–611.

    Google Scholar 

  • Abdulsalam, K., Abdel-Megeed, M., Rezk, M., & Nageeb, M. (1993). The influence of oxytetracycline on Wijamed date palm trees. Annals of Agricultural Science (Ain Shams University, Egypt), 38, 301–309.

    Google Scholar 

  • Al-Awadhi, H., Hanif, A., Suleman, P., & Montasser, M. (2002). Molecular and microscopical detection phytoplasma associated with yellowing disease of date palm Phoenix dactylifera L in Kuwait. Kuwait Journal of Science and Engineering, 29(2), 87–109.

    CAS  Google Scholar 

  • Alhudaib, K., Arocha, Y., Wilson, M., & Jones, P. (2007a). “Al-Wijam”, a new phytoplasma disease of date palm in Saudi Arabia. Bulletin of Insectology, 60(2), 285–286.

    Google Scholar 

  • Alhudaib, K., Arocha, Y., Wilson, M., & Jones, P. (2007b). Identification and molecular characterization of a phytoplasma associated with Al-Wijam disease of date palm in Saudi Arabia. Arab Journal of Plant Protection, 25, 116–122.

    Google Scholar 

  • Alvarez, E., Mejía, J. F., Contaldo, N., Paltrinieri, S., Duduk, B., & Bertaccini, A. (2014). ‘Candidatus Phytoplasma asteris’ strains associated with oil palm lethal wilt in Colombia. Plant Disease, 98(3), 311–318.

    Article  CAS  Google Scholar 

  • Baric, S., & Dalla-Via, J. (2004). A new approach to apple proliferation detection: A highly sensitive real-time PCR assay. Journal of Microbiological Methods, 57(1), 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Bekele, B., Hodgetts, J., Tomlinson, J., Boonham, N., Nikolić, P., Swarbrick, P., & Dickinson, M. (2011). Use of a realtime LAMP isothermal assay for detecting 16SrII and XII phytoplasmas in fruit and weeds of the Ethiopian Rift Valley. Plant Pathology, 60(2), 345–355.

    Article  CAS  Google Scholar 

  • Bertaccini, A. (2007). Phytoplasmas: Diversity, taxonomy, and epidemiology. Frontiers in Bioscience, 12, 673–689.

    Article  CAS  PubMed  Google Scholar 

  • Bertaccini, A., Duduk, B., Paltrinieri, S., & Contaldo, N. (2014). Phytoplasmas and phytoplasma diseases: A severe threat to agriculture. American Journal of Plant Sciences, 5(12), 1763–1788.

    Article  Google Scholar 

  • Bertin, S., Guglielmino, C., Karam, N., Gomulski, L., Malacrida, A., & Gasperi, G. (2007). Diffusion of the Nearctic leafhopper Scaphoideus titanus Ball in Europe: A consequence of human trading activity. Genetica, 131(3), 275–285.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, J. B., & Elmer, H. S. (1978). Pests and diseases of the date palm (United States Department of Agriculture – Agricultural Research Service Handbook No 527, 42 pp). Washington, DC: Department of Agriculture, Science and Education Administration.

    Google Scholar 

  • Carraro, L., Loi, N., Ermacora, P., & Osler, R. (1998). High tolerance of European plum varieties to plum leptonecrosis. European Journal of Plant Pathology, 104(2), 141–145.

    Article  Google Scholar 

  • Chao, C. T., & Krueger, R. R. (2007). The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience, 42(5), 1077–1082.

    Google Scholar 

  • Christensen, N. M., Nicolaisen, M., Hansen, M., & Schulz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant-Microbe Interactions, 17(11), 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  • Contaldo, N., Bertaccini, A., Paltrinieri, S., Windsor, H., & Windsor, G. (2012). Axenic culture of plant pathogenic phytoplasmas. Phytopathologia Mediterranea, 51(3), 607–617.

    CAS  Google Scholar 

  • Cordova, I., Oropeza, C., Almeyda, H., & Harrison, N. A. (2000). First report of a phytoplasma-associated leaf yellowing syndrome of palma jipi plants in Southern México. Plant Disease, 84(7), 807.

    Article  Google Scholar 

  • Cronjé, P., Dabek, A. J., Jones, P., & Tymon, A. M. (2000a). First report of a phytoplasma associated with a disease of date palms in North Africa. Plant Pathology, 49(6), 801.

    Article  Google Scholar 

  • Cronjé, P., Dabek, A. J., Jones, P., & Tymon, A. M. (2000b). Slow decline: A new disease of mature date palms in North Africa associated with a phytoplasma. Plant Pathology, 49(6), 804.

    Article  Google Scholar 

  • Deng, S., & Hiruki, C. (1990). Enhanced detection of a plant pathogenic mycoplasma-like organism by polymerase chain reaction. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 66(7), 140–144.

    Article  Google Scholar 

  • Deng, S., & Hiruki, C. (1991). Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods, 14(1), 53–61.

    Article  CAS  Google Scholar 

  • Djerbi, M. (1983). Diseases of the date palm. FAO Regional Project for Palms and Dates. Baghdad, Iraq (112 p).

    Google Scholar 

  • Doi, Y., Teranaka, M., Yora, K., & Asuyama, H. (1967). Mycoplasma or PLT grouplike microrganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom. Annals of Phytopathological Society, Japan, 33, 259–266.

    Google Scholar 

  • El-Arosi, H., El-Said, H., Najieb, M., & Jabeen, N. (1982). Al-Wijam, decline date palm disease. In Y. M. Makki (Ed.), Proceedings of the first symposium on date palm, 23–25 March 1982, Al-Hassa (388–403 pp).

    Google Scholar 

  • Elliott, M. L. (2009). Emerging palm diseases in Florida. HortTechnology, 19(4), 717–718.

    Google Scholar 

  • Elliott, M. L., & Harrison, N. A. (2007). Palm diseases caused by phytoplasmas. Available at: http://www.freshfromflorida.com/content/download/9785/134978/Palm%20Diseases%20Caused%20by%20Phytoplasmas.pdf. Accessed on 18 July, 2014.

  • El-Zayat, M., Abdusalm, K., Shamlool, A., Djerbi, M., & Hadidi, A. (2000). Phytoplasma detected in date palm trees infected by Al-Wijam in Kingdom of Saudi Arabia. In Proceedings of the date palm international symposium, 22–25 February 2000, Windhoek (230–236 pp).

    Google Scholar 

  • Eziashi, E., & Omamor, I. (2010). Lethal yellowing disease of the coconut palms (Cocos nucifera L.): An overview of the crises. African Journal of Biotechnology, 9(54), 9122–9127.

    Google Scholar 

  • Firrao, G., Garcia-Chapa, M., & Marzachì, C. (2007). Phytoplasmas: Genetics, diagnosis and relationships with the plant and insect host. Frontiers in Bioscience, 12, 1353–1375.

    Article  CAS  PubMed  Google Scholar 

  • Florida Department of Agriculture and Consumer Services. (2008). Pest alert: Texas phoenix palm decline. Available at: http://www.freshfromflorida.com/Divisions-Offices/Plant-Industry/Plant-Industry-Publications/Pest-Alerts/Pest-Alerts-Texas-Phoenix-Palm-Decline. Accessed on 18 July 2014.

  • Florida Department of Agriculture and Consumer Services. (2010). Texas phoenix palm decline sites. Available at: http://www.freshfromflorida.com/content/download/11473/145134/TPPD.pdf. Accessed on 18 July 2014.

  • Fránová, J., Ludvíková, H., Paprštein, F., & Bertaccini, A. (2013). Genetic diversity of Czech ‘Candidatus Phytoplasma mali’ strains based on multilocus gene analyses. European Journal of Plant Pathology, 136(4), 675–688.

    Article  Google Scholar 

  • Fukuta, S., Kato, S., Yoshida, K., Mizukami, Y., Ishida, A., Ueda, J., Kanbe, M., & Ishimoto, Y. (2003). Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. Journal of Virological Methods, 112(1–2), 35–40.

    Article  CAS  PubMed  Google Scholar 

  • Halbert, S. E., Wilson, S. W., Bextine, B., & Youngblood, S. B. (2014). Potential planthopper vectors of palm phytoplasmas in Florida with a description of a new species of the genus Omolicna (Hemiptera: Fulgoroidea). Florida Entomologist, 97(1), 90–97.

    Article  Google Scholar 

  • Harrison, N., & Jones, P. (2003). Diseases of coconut. In R. C. Ploetz (Ed.), Diseases of tropical fruit crops (197–226 pp). Wallingford: CABI Publishing.

    Google Scholar 

  • Harrison, N. A., Myrie, W., Jones, P., Carpio, M. L., Castillo, M., Doyle, M. M., & Oropeza, C. (2002a). 16S rRNA interoperon sequence heterogeneity distinguishes strain populations of palm lethal yellowing phytoplasma in the Caribbean region. Annals of Applied Biology, 141(2), 183–193.

    Article  CAS  Google Scholar 

  • Harrison, N. A., Womack, M., & Carpio, M. L. (2002b). Detection and characterization of a lethal yellowing (16SrIV) group phytoplasma in Canary Island date palms affected by lethal decline in Texas. Plant Disease, 86(6), 676–681.

    Article  CAS  Google Scholar 

  • Harrison, N. A., Helmick, E. E., & Elliott, M. L. (2008). Lethal yellowing-type diseases of palms associated with phytoplasmas newly identified in Florida, USA. Annals of Applied Biology, 153(1), 85–94.

    Article  CAS  Google Scholar 

  • Harrison, N. A., Helmick, E. E., & Elliott, M. L. (2009). First report of a phytoplasma-associated lethal decline of Sabal palmetto in Florida, USA. Plant Pathology, 58(4), 792.

    Article  Google Scholar 

  • Harrison, N. A., Davis, R. E., Oropeza, C., Helmick, E. E., Narváez, M., Eden-Green, S., Dollet, M., & Dickinson, M. (2014). ‘Candidatus Phytoplasma palmicola’, associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. International Journal of Systematic and Evolutionary Microbiology, 64, 1890–1899.

    Article  CAS  PubMed  Google Scholar 

  • Himeno, M., Neriya, Y., Minato, N., Miura, C., Sugawara, K., Ishii, Y., Yamaji, Y., Kakizawa, S., Oshima, K., & Namba, S. (2011). Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. The Plant Journal, 67(6), 971–979.

    Article  CAS  PubMed  Google Scholar 

  • Hodgetts, J., Boonham, N., Mumford, R., Harrison, N., & Dickinson, M. (2008). Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology, 58(8), 1826–1837.

    Article  CAS  PubMed  Google Scholar 

  • Hodgetts, J., Boonham, N., Mumford, R., & Dickinson, M. (2009). Panel of 23S rRNA gene-based real-time PCR assays for improved universal and group-specific detection of phytoplasmas. Applied and Environmental Microbiology, 75(9), 2945–2950.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hodgetts, J., Tomlinson, J., Boonham, N., González-Martín, I., Nikolić, P., Swarbrick, P., Yankey, E. N., & Dickinson, M. (2011). Development of rapid in-field loop-mediated isothermal amplification (LAMP) assays for phytoplasmas. Bulletin of Insectology (Supplementary), 64, S41–S42.

    Google Scholar 

  • Howard, F. W. (1980). Attractiveness of date and coconut palms to Myndus crudus and other homopterans. Proceedings of the Florida State Horticultural Society, 93, 199–201.

    Google Scholar 

  • Howard, F. W. (1983). World distribution and possible geographic origin of palm lethal yellowing disease and its vectors. FAO Plant Protection Bulletin, 31, 101–113.

    Google Scholar 

  • Howard, F. W. (1992). Lethal yellowing susceptibility of date palms in Florida. Principes, 36(4), 217–222.

    Google Scholar 

  • Howard, F. W., & Barrant, C. I. (1989). Questions and answers about lethal yellowing diseases. Principes, 33, 163–171.

    Google Scholar 

  • Howard, F. W., & Oropeza, C. (1998). Organic mulch as a factor in the nymphal habitat of Myndus crudus (Hemiptera: Auchenorrhyncha: Cixiidae). Florida Entomologist, 81, 92–97.

    Article  Google Scholar 

  • Howard, F. W., Thomas, D. L., Donselman, H. M., & Collins, M. E. (1979). Susceptibilities of palm species to mycoplasma organism-associated diseases in Florida. FAO Plant Protection Bulletin, 27, 109–117.

    Google Scholar 

  • Howard, F. W., Norris, R., & Thomas, D. (1983). Evidence of transmission of palm lethal yellowing agent by a planthopper, Myndus crudus (Homoptera, Cixiidae). Tropical Agriculture, 60(3), 168–171.

    Google Scholar 

  • Howard, F. W., Williams, D. S., & Norris, R. C. (1984). Insect transmission of lethal yellowing to young palms. International Journal of Entomology, 26(4), 331–338.

    Google Scholar 

  • Howard, F. W., Atilano, R., & Williams, D. (1985). Experimental establishment of five date palm cultivars in Southern Florida. The Date Palm Journal, 4, 91–101.

    Google Scholar 

  • Hren, M., Boben, J., Rotter, A., Kralj, P., Gruden, K., & Ravnikar, M. (2007). Real-time PCR detection systems for Flavescence dorée and Bois noir phytoplasmas in grapevine: Comparison with conventional PCR detection and application in diagnostics. Plant Pathology, 56(5), 785–796.

    Article  CAS  Google Scholar 

  • IRPCM. (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1243–1255.

    Article  Google Scholar 

  • Iwamoto, T., Sonobe, T., & Hayashi, K. (2003). Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. Journal of Clinical Microbiology, 41(6), 2616–2622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jarausch, W., Lansac, M., & Dosba, F. (1999). Seasonal colonization pattern of European stone fruit yellows phytoplasmas in different prunus species detected by specific PCR. Journal of Phytopathology, 147(1), 47–54.

    Google Scholar 

  • Jarausch, W., Peccerella, T., Schwind, N., Jarausch, B., & Krczal, G. (2004). Establishment of a quantitative real-time PCR assay for the quantification of apple proliferation phytoplasmas in plants and insects. Acta Horticulturae, 657, 415–420.

    Article  CAS  Google Scholar 

  • Kollar, A., Seemüller, E., Bonnet, F., Saillard, C., & Bove, J. (1990). Isolation of the DNA of various plant pathogenic mycoplasmalike organisms from infected plants. Phytopathology, 80(3), 233–237.

    Article  CAS  Google Scholar 

  • Krueger, R. R. (2015). Date palm status and perspective in United States of America. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Date palm genetic resources and utilization (Africa and the Americas, Vol. 1, 544 p). Dordrecht: Springer, Science + Business Media.

    Google Scholar 

  • Lee, I.-M., Hammond, R., Davis, R., & Gundersen, D. (1993). Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology, 83(8), 834–842.

    Article  CAS  Google Scholar 

  • Lee, I.-M., Gundersen, D. E., Hammond, R. W., & Davis, R. E. (1994). Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host-plant. Phytopathology, 84(6), 559–566.

    Article  CAS  Google Scholar 

  • Lee, I.-M., Bertaccini, A., Vibio, M., & Gundersen, D. (1995). Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology, 85(6), 728–735.

    Article  CAS  Google Scholar 

  • Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 48(4), 1153–1169.

    Article  CAS  Google Scholar 

  • Lee, I.-M., Davis, R. E., & Gundersen-Rindal, D. E. (2000). Phytoplasma: Phytopathogenic mollicutes. Annual Review of Microbiology, 54(1), 221–255.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I.-M., Zhao, Y., Davis, R. E., Wei, W., & Martini, M. (2007). Prospects of DNA-based systems for differentiation and classification of phytoplasmas. Bulletin of Insectology, 60(2), 239–244.

    Google Scholar 

  • Lee, I.-M., Bottner-Parker, K. D., Zhao, Y., Bertaccini, A., & Davis, R. E. (2012). Differentiation and classification of phytoplasmas in the pigeon pea witches’-broom group (16SrIX): an update based on multiple gene sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 62, 2279–2285.

    Article  PubMed  Google Scholar 

  • Makarova, O., Contaldo, N., Paltrinieri, S., Kawube, G., Bertaccini, A., & Nicolaisen, M. (2012). DNA barcoding for identification of ‘Candidatus Phytoplasmas’ using a fragment of the elongation factor Tu gene. PLoS One, 7(12), e52092. doi:10.1371/journal.pone.0052092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martini, M., Botti, S., Marcone, C., Marzachì, C., Casati, P., Bianco, P. A., Benedetti, R., & Bertaccini, A. (2002). Genetic variability among flavescence dorée phytoplasmas from different origins in Italy and France. Molecular and Cellular Probes, 16(3), 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Martini, M., Lee, I.-M., Bottner, K. D., Zhao, Y., Botti, S., Bertaccini, A., Harrison, N. A., Carraro, L., Marcone, C., Khan, A. J., & Osler, R. (2007). Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology, 57(9), 2037–2051.

    Article  CAS  PubMed  Google Scholar 

  • McCoy, R. E., Thomas, D. L., & Tsai, J. H. (1976). Lethal yellowing: A potential danger to date production. Date Growers Institute Report, 53, 4–8.

    Google Scholar 

  • McCoy, R. E., Miller, M. E., & Williams, D. S. (1980a). Lethal yellowing in Texas Phoenix palms. Principes, 24, 179–180.

    Google Scholar 

  • McCoy, R. E., Miller, M. E., Thomas, D. L., & Amador, J. (1980b). Lethal decline of Phoenix palms in Texas associated with mycoplasma-like organisms. Plant Disease, 64, 1038–1040.

    Article  Google Scholar 

  • McCoy, R. E., Thomas, D. L., & Tsai, J. H. (1982). Lethal yellowing: a potential danger to date production. Date Palm Journal, 1, 295–305.

    Google Scholar 

  • McCoy, R. E., Howard, F. W., Tsai, J. H., Donselman, H. M., Thomas, D. L., Basham, R. A., Atilano, R. A., Eskafi, F. M., Britt, L., & Collins, M. E. (1983). Lethal yellowing of palms (Institute of Food and Agricultural Sciences Bulletin No. 834, 100 p). Florida: Institute of Food and Agricultural Sciences, University of Florida.

    Google Scholar 

  • McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiykowski, L. N., Cousin, M. T., Dale, J. L., De Leeuw, G. T. N., Golino, D. A., Hacket, K. J., Kirkpatrick, B. C., Marvitz, R., Petzold, H., Sinha, R. C., Sugiura, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., & Seemüller, E. (1989). Plant diseases associated with mycoplasma-like organisms. In R. F. Whitcomb & J. C. Tully (Eds.), The mycoplasmas, (Volume 5), spiroplasmas, acholeplasmas, and mycoplasmas of plants and arthropods (545–640 pp). San Diego: Academic.

    Google Scholar 

  • Miller, M., Maxwell, N., & Amador, J. (1980). Lethal decline of Phoenix canariensis and P. dactylifera in the Rio Grande Valley. Journal Rio Grande Horticultural Society, 34, 89–95.

    Google Scholar 

  • Mitrović, J., Kakizawa, S., Duduk, B., Oshima, K., Namba, S., & Bertaccini, A. (2011). The groEL gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. Annals of Applied Biology, 159(1), 41–48.

    Article  Google Scholar 

  • Munyaneza, J. E., Crosslin, J. M., Upton, J. E., & Buchman, J. L. (2010). Incidence of the beet leafhopper-transmitted virescence agent phytoplasma in local populations of the beet leafhopper, Circulifer tenellus, in Washington state. Journal of Insect Science, 10, 18. doi:10.1673/031.010.1801.

    Article  PubMed Central  PubMed  Google Scholar 

  • Namba, S., Kato, S., Iwanami, S., Oyaizu, H., Shiozawa, H., & Tsuchizaki, T. (1993). Detection and differentiation of plant-pathogenic mycoplasmalike organisms using polymerase chain reaction. Phytopathology, 83(7), 786–791.

    Article  CAS  Google Scholar 

  • Nicolaisen, M., Contaldo, N., Makarova, O., Paltrinieri, S., & Bertaccini, A. (2011). Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants. Bulletin of Insectology (Supplementary), 64, S35–S36.

    Google Scholar 

  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63. doi:10.1093/nar/28.12.e63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ntushelo, K., Harrison, N. A., & Elliott, M. L. (2012). Comparison of the ribosomal RNA operon from Texas Phoenix decline and lethal yellowing phytoplasmas. European Journal of Plant Pathology, 133(4), 779–782.

    Article  CAS  Google Scholar 

  • Ntushelo, K., Harrison, N. A., & Elliott, M. L. (2013a). Differences between the Texas phoenix palm phytoplasma and the coconut lethal yellowing phytoplasma revealed by restriction fragment length polymorphism (RFLP) analysis of the NUSA and HFLB genes. African Journal of Biotechnology, 12(25), 3934–3939.

    CAS  Google Scholar 

  • Ntushelo, K., Harrison, N. A., & Elliott, M. L. (2013b). Palm phytoplasmas in the Caribbean basin. Palms, 57(2), 93–100.

    Google Scholar 

  • Obura, E., Masiga, D., Wachira, F., Gurja, B., & Khan, Z. R. (2011). Detection of phytoplasma by loop-mediated isothermal amplification of DNA (LAMP). Journal of Microbiological Methods, 84(2), 312–316.

    Article  CAS  PubMed  Google Scholar 

  • Ogle, L., & Harries, H. (2005). Introducing the vector: How coconut lethal yellowing disease may have reached the Caribbean. Ethnobotany Research and Applications, 3, 139–142.

    Google Scholar 

  • Ong, K., & Mcbride, S. (2009). Palm diseases caused by phytoplasmas in Texas. Texas Plant Disease Diagnostic Laboratory, Department of Plant Pathology and Microbiology, Texas AgriLife Extension Service, Texas A&M System, Texas A&M University, USA. Available at: http://www.npdn.org/webfm_send/1065. Accessed on: 18 July 2014.

  • Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., & Namba, S. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics, 36(1), 27–29.

    Article  CAS  PubMed  Google Scholar 

  • Plavsic-Banjac, B., Hunt, P., & Maramorosch, K. (1972). Mycoplasmalike bodies associated with lethal yellowing disease of coconut palms. Phytopathology, 62, 298–299.

    Article  Google Scholar 

  • Ploetz, R. C., Ohr, H. D., Carpenter, J. B., & Pinkas, Y. (2003). Diseases of date. In R. C. Ploetz (Ed.), Diseases of tropical fruit crops (227–239 pp). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Schaad, N. W., Frederick, R. D., Shaw, J., Schneider, W. L., Hickson, R., Petrillo, M. D., & Luster, D. G. (2003). Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology, 41(1), 305–324.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, B., & Seemüller, E. (1994). Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Applied and Environmental Microbiology, 60(9), 3409–3412.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider, B., Ahrens, U., Kirkpatrick, B. C., & Seemüller, E. (1993). Classification of plant-pathogenic mycoplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA. Journal of General Microbiology, 139(3), 519–527.

    Article  CAS  Google Scholar 

  • Seemüller, E., & Schneider, B. (2004). ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1217–1226.

    Article  PubMed  Google Scholar 

  • Seemüller, E., Kunze, L., & Schaper, U. (1984). Colonization behaviour of MLO and symptom expression of proliferation-diseased apple trees and decline-diseased pear trees over a period of several years. Journal of Plant Disease and Protection, 91(5), 525–532.

    Google Scholar 

  • Sugio, A., Kingdom, H. N., Maclean, A. M., Grieve, V. M., & Hogenhout, S. A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences, 108(48), E1254–E1263.

    Article  CAS  Google Scholar 

  • Tanne, E., Boudon-Padieu, E., Clair, D., Davidovich, M., Melamed, S., & Klein, M. (2001). Detection of Phytoplasma by polymerase chain reaction of insect feeding medium and its use in determining vectoring ability. Phytopathology, 91(8), 741–746.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D. L. (1974). Possible link between declining palm species and lethal yellowing of coconut palms. Florida State Horticultural Society, Florida Agricultural Experiment Stations Journal Series No. 5640, USA, 502–504 pp.

    Google Scholar 

  • Thomas, D. L. (1979). Mycoplasma like bodies associated with lethal declines of palms in Florida. Phytopathology, 69(9), 928–934.

    Article  Google Scholar 

  • Tomlinson, J. A., Boonham, N., & Dickinson, M. (2010). Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathology, 59(3), 465–471.

    Article  CAS  Google Scholar 

  • Tsai, J. H., & Harrison, N. A. (2003). Lethal yellowing and lethal declines of palms. In G. Loebenstein & G. Thottappilly (Eds.), Virus and virus-like diseases of major crops in developing countries (597–606 pp). Dordrecht: Springer Science+Business Media.

    Google Scholar 

  • Vázquez-Euán, R., Harrison, N., Narvaez, M., & Oropeza, C. (2011). Occurrence of a 16SrIV group phytoplasma not previously associated with palm species in Yucatan, Mexico. Plant Disease, 95(3), 256–262.

    Article  Google Scholar 

  • Weintraub, P. G. (2007). Insect vectors of phytoplasmas and their control – An update. Bulletin of Insectology, 60(2), 169–173.

    Google Scholar 

  • Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51(1), 91–111.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, M. R. (1987). The Auchenorrhyncha (Homoptera) associated with palms. In M. Wilson & L. Nault (Eds.), Proceedings of the 2nd international workshop on leafhoppers and planthoppers of economic importance, 28 July to 1 August 1986, Provo. 327–342 pp.

    Google Scholar 

  • Win, N. K., Lee, S. Y., Bertaccini, A., Namba, S., & Jung, H. Y. (2013). Candidatus Phytoplasma balanitae’ associated with witches’ broom disease of Balanites triflora. International Journal of Systematic and Evolutionary Microbiology (Pt 2), 63, 636–640.

    Article  CAS  Google Scholar 

  • Zhang, J., Miller, S., Hoy, C., Zhou, X., & Nault, L. (1998). A rapid method for detection and differentiation of aster yellows phytoplasma-infected and-inoculative leafhoppers. Phytopathology (Supplementary), 88, S84.

    Google Scholar 

  • Zhao, Y., Wei, W., Lee, I.-M., Shao, J., Suo, X., & Davis, R. E. (2009). Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology, 59(10), 2582–2593.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Anne Johnson of Charles Sturt University, Australia for assistance with manuscript preparation. Geoff Gurr is supported by the Australian Research Council, Australia and the Chinese Thousand Talents Program, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff M. Gurr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gurr, G.M. et al. (2015). Phytoplasmas and Their Insect Vectors: Implications for Date Palm. In: Wakil, W., Romeno Faleiro, J., Miller, T. (eds) Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-24397-9_10

Download citation

Publish with us

Policies and ethics