Skip to main content

Modelling of Underpotential Deposition on Bulk Electrodes

  • Chapter
  • First Online:
Underpotential Deposition

Abstract

As discussed in Chaps. 2 and 3, a wide variety of experimental techniques have allowed to obtain a wealth of information of upd systems. This information concerns:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A example of multicomponent is given in Chapter 6 in the case of upd on nanoparticles.

  2. 2.

    \( {U}_{\mathrm{S}-{\mathrm{M}}_{\theta}}^{\mathrm{bind}} \) is calculated as: \( {U}_{\mathrm{S}-{\mathrm{M}}_{\theta}}^{\mathrm{bind}}=\left({U}_{\mathrm{S}+\mathrm{M}}-{U}_{\mathrm{S}}\right)/{N}_{\mathrm{M}}-{U}_{\mathrm{M}}^{\mathrm{vac}} \), where is \( {U}_{\mathrm{S}+\mathrm{M}} \) is the energy of substrate + adsorbate, U S is the energy of a nacked substrate, N M is the number of M atoms in the supercell, and U vacM is the energy of a single M atom in vacuum.

  3. 3.

    Note that this quantity is different from the binding energy of an adsorbate atom, \( {U}_{{\mathrm{S}\hbox{-} \mathrm{M}}_{\uptheta}}^{\mathrm{bind}} \) used in Eq. (5.18), which is referred to isolated adsorbate atoms in vacuum. That is: \( {U}_{\mathrm{S}-\mathrm{M}}=\left({U}_{\mathrm{S}+\mathrm{M}}-{U}_{\mathrm{S}}-{U}_{\mathrm{adlayer}}^{\mathrm{vac}}\right)/{N}_{\mathrm{M}} \) where is \( {U}_{\mathrm{S}+\mathrm{M}} \) is the energy of substrate + adsorbate, U S is the energy of a nacked substrate, N M is the number of M atoms in the supercell, and U vacadlayer is the energy of a free standing adlayer in vacuum.

  4. 4.

    Poisson processes in a nutshell: if N t (t) is a random variable characterizing the observation of a number of certain events during a time interval t, Poisson processes are characterized by: (a) \( {N}_t(0)=0 \), (b) N t (t 1) and N t (t 2) are independent if t 1 and t 2 are disjoint intervals. (c) The probability of observing a single event in the interval h increases linearly with h. (d) The probability of observing two or more events in the interval h increases with a power larger than one.

References

  1. Oviedo OA, Negre CFA, Mariscal MM, Sánchez CG, Leiva EPM (2012) Electrochem Commun 16:1

    Article  CAS  Google Scholar 

  2. Sánchez CG, Leiva EPM, Kohanoff J (2001) Langmuir 17:2219

    Article  CAS  Google Scholar 

  3. Hill TL (1960) An introduction of statistical mechanics. Addison-Wesley Publishing Company Inc, Reading

    Google Scholar 

  4. Schmickler W (1979) J Electroanal Chem 100:533

    Article  CAS  Google Scholar 

  5. Kornyshev A, Schmickler W (1985) J Electroanal Chem 185:253

    Article  CAS  Google Scholar 

  6. Muscat JP, Newns DM (1978) Prog Surt Sci 9:1

    Article  CAS  Google Scholar 

  7. Gadzuk JP (1975) Surface physics of materials, vol 2. Academic, New York

    Google Scholar 

  8. Schmickler W, Henderson D (1986) Prog Surf Sci 22:4

    Article  Google Scholar 

  9. Schmickler W (1985) Chem Phys Lett 115:216

    Article  CAS  Google Scholar 

  10. Kornyshev A, Schmickler W (1986) J Electroanal Chem 202:1

    Article  CAS  Google Scholar 

  11. Newmark AR, Schmickler W (1992) J Electroanal Chem 329:159

    Article  CAS  Google Scholar 

  12. Schmickler W (1995) Chem Phys Lett 237:152

    Article  CAS  Google Scholar 

  13. Schmickler W (1996) Electrochim Acta 41:2329

    Article  CAS  Google Scholar 

  14. Santos E, Quaino P, Schmickler W (2012) Phys Chem Chem Phys 14:11224

    Article  CAS  Google Scholar 

  15. Leiva EPM, Schmickler W (1989) Chem Phys Lett 160:75

    Article  CAS  Google Scholar 

  16. Schmickler W (1990) Chem Phys 141:95

    Article  CAS  Google Scholar 

  17. Lehnert W, Schmickler W (1991) J Electroanal Chem 310:27

    Article  CAS  Google Scholar 

  18. Lang ND, Kohn W (1970) Phys Rev B 1:4555

    Article  Google Scholar 

  19. Ashcroft NW (1966) Phys Lett 23:38

    Article  Google Scholar 

  20. Leiva EPM, Schmickler W (1994) Electrochim Acta 39:1015

    Article  CAS  Google Scholar 

  21. Leiva EPM (1995) Surf Sci 335:83

    Article  CAS  Google Scholar 

  22. Leiva EPM, Schmickler W (1995) Electrochim Acta 40:37

    Article  CAS  Google Scholar 

  23. Kramar T, Podloucky R, Neckel A, Erschbaumer H, Freeman AJ (1991) Surf Sci 247:58

    Article  CAS  Google Scholar 

  24. Sánchez CG, Leiva EPM (1998) J Electroanal Chem 458:183

    Article  Google Scholar 

  25. Sánchez CG, Leiva EPM (1999) Electrochim Acta 45:691

    Article  Google Scholar 

  26. Dietterle M, Will T, Kolb DM (1995) Surf Sci 342:2937

    Article  Google Scholar 

  27. Ogaki K, Itaya K (1995) Electrochim Acta 40:1249

    Article  CAS  Google Scholar 

  28. Kolb DM (1994) Ber Bunsenges Phys Chem 98:1421

    Article  CAS  Google Scholar 

  29. Greeley J (2010) Electrochim Acta 55:5545

    Article  CAS  Google Scholar 

  30. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  31. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, London

    Google Scholar 

  32. Mrozek P, Sung Y-E, Wieckowski A (1995) Surf Sci 335:44

    Article  CAS  Google Scholar 

  33. Sánchez CG, Dassie SA, Leiva EPM (2002) Langmuir 18:6628

    Article  CAS  Google Scholar 

  34. Soler JM, Artacho E, Gale J, García J, Junquera J, Ordejón J, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  35. Esplandiu MJ, Schneeweiss MA, Kolb MA (1999) Phys Chem Chem Phys 1:4847

    Article  CAS  Google Scholar 

  36. Feibelman P (2001) Phys Rev B 64:125403

    Article  CAS  Google Scholar 

  37. Pasti I, Mentus S (2010) J Alloys Compd 497:38

    Article  CAS  Google Scholar 

  38. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys Condens Matter 21:395502

    Article  Google Scholar 

  39. Perdev JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  Google Scholar 

  40. Danilov AI, Nazmutdinov RR, Zinkicheva TT, Molodkina EB, Rudnev AV, Polukarov YM, Feliu JM (2008) Russ J Electrochem 44:697

    Article  CAS  Google Scholar 

  41. Blum L, Huckaby DA (1990) J Chem Phys 92:2646

    Article  Google Scholar 

  42. Blum L, Huckaby DA (1991) J Chem Phys 94:6887

    Article  CAS  Google Scholar 

  43. Blum L, Huckaby DA, Legault M (1996) Electrochim Acta 41:2207

    Article  CAS  Google Scholar 

  44. Huckaby DA, Blum L (1991) J Electroanal Chem 315:255

    Article  CAS  Google Scholar 

  45. Huckaby DA, Blum L (1993) Proc Electrochem Soc 93:232

    Google Scholar 

  46. Blum L, Huckaby DA (1994) J EIectroanal Chem 375:69

    Article  CAS  Google Scholar 

  47. Blum L, Legault M, Turq P (1994) J ELectroanal Chem 379:35

    Article  Google Scholar 

  48. Huckaby DA, Medved I (2002) J Chem Phys 117:2914

    Article  CAS  Google Scholar 

  49. Huckaby DA, Medved I (2006) Rom J Phys 51:603

    Google Scholar 

  50. Medved I, Huckaby DA (2010) Fluid Phase Equilib 290:21

    Article  CAS  Google Scholar 

  51. Borgs C, Kotecky R (1990) J Stat Phys 61:79

    Article  Google Scholar 

  52. Borgs C, Kotecky R (1995) J Stat Phys 79:43

    Article  Google Scholar 

  53. White JH, Abruña HD (1990) J Phys Chem 94:894

    Article  CAS  Google Scholar 

  54. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087

    Article  CAS  Google Scholar 

  55. Norman GE, Filinov VS (1969) High Temp 7:216

    Google Scholar 

  56. Del Popolo MG, Leiva EPM (1997) J Electroanal Chem 440:271

    Google Scholar 

  57. Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth. VCH, Weinheim

    Book  Google Scholar 

  58. Dietterle M, Will T, Kolb DM (1995) Surf Sci 342:29

    Article  CAS  Google Scholar 

  59. Rojas MI, Amilibia GE, Del Popolo MG, Leiva EPM (2002) Surf Sci Lett 499:L135

    Article  CAS  Google Scholar 

  60. Rojas MI, Del Popolo MG, Leiva EPM (2004) Langmuir 20:4279

    Article  CAS  Google Scholar 

  61. Grossmann A, Erley W, Hannon JB, Ibach H (1996) Phys Rev Lett 77:127

    Article  CAS  Google Scholar 

  62. Rojas MI (2004) Surf Sci 569:76

    Article  CAS  Google Scholar 

  63. Leiva EPM, Del Pópolo MG, Schmickler W (2000) Chem Phys Lett 320:393

    Article  CAS  Google Scholar 

  64. Oviedo OA, Rojas MI, Leiva EPM (2005) Electrochem Commun 7:472

    Article  CAS  Google Scholar 

  65. Lorenz W, Staikov G, Schindler W, Wiestbeck W (2002) J Electrochem Soc 149:K47

    Article  CAS  Google Scholar 

  66. Van Der Eerden JP, Staikov G, Kashchiev D, Lorenz WJ, Budevski E (1979) Surf Sci 82:364

    Article  Google Scholar 

  67. Giménez MC, Leiva EPM (1999) Electrochim Acta 45:699

    Article  Google Scholar 

  68. Giménez MC, Leiva EPM (2003) Langmuir 19:10538

    Article  CAS  Google Scholar 

  69. Giménez MC, Ramirez-Pastor AJ, Leiva EPM (2006) Surf Sci 600:4741

    Article  CAS  Google Scholar 

  70. Giménez MC, Ramirez-Pastor AJ, Leiva EPM (2010) J Chem Phys 132:184703

    Article  CAS  Google Scholar 

  71. Zhang J, Sung YE, Rikvold PA, Wieckowski A (1996) J Chem Phys 104:5699

    Article  CAS  Google Scholar 

  72. Hachiya T, Honbo H, Itaya KJ (1991) Electroanal Chem 315:275

    Article  CAS  Google Scholar 

  73. Magnussen OM, Hotlos J, Beitel G, Kolb DM, Behm RJ (1991) J Vac Sci Technol B 9:969

    Article  CAS  Google Scholar 

  74. Binder K (1986) In: Binder K (ed) Monte Carlo methods in statistical physics, 2nd edn. Springer, Berlin

    Chapter  Google Scholar 

  75. Blume M (1966) Phys Rev 141:517; Capel HW (1966) Physica 32:966; Blume M, Emery VJ, Griffiths RB (1971) Phys Rev A 4: 1071

    Google Scholar 

  76. Fichthorn KA, Weinberg WH (1991) J Chem Phys 95:1090

    Article  CAS  Google Scholar 

  77. Giménez MC, Del Pópolo MG, Leiva EPM, García SG, Salinas DR, Mayer CE, Lorenz WJ (2002) J Electrochem Soc 149, E109

    Article  CAS  Google Scholar 

  78. Foiles SM, Baskes MI, Daw MS (1986) Phys Rev B 33:7983

    Article  CAS  Google Scholar 

  79. Finnis MW, Sinclair JE (1984) Philos Mag A 50:45

    Article  CAS  Google Scholar 

  80. Carlsson AE (1990) In: Ehrenreich H, Seitz H, Turnbull D (eds) Solid state physics, vol 43. Academic, New York

    Google Scholar 

  81. Ercolessi F, Tosatti E, Parrinello M (1986) Phys Rev Lett 57:719

    Article  CAS  Google Scholar 

  82. Hill TL (1960) An introduction to statistical thermodynamics. Addison-Wesley Publishing Company Inc., London

    Google Scholar 

  83. Drews TO, Braatz RD, Alkire RC (2007) Z Phys Chem 221:1287

    Article  CAS  Google Scholar 

  84. García SG (1997) Ph.D. thesis. Universidad Nacional del Sur, Bahía Blanca, Argentina

    Google Scholar 

  85. Garcia S, Salinas D, Mayer C, Schmidt E, Staikov G, Lorenz WJ (1998) Electrochim Acta 43:3007

    Article  CAS  Google Scholar 

  86. Treeratanaphitak T, Pritzker MD, Abukhdeir NM (2014) Electrochim Acta 121:407

    Article  CAS  Google Scholar 

  87. Treeratanaphitak T, Pritzker MD, Abukhdeir NM (2014) Electrochem Commun 46:140

    Article  CAS  Google Scholar 

  88. Giménez MC, Del Pópolo MG, Leiva EPM (2002) Langmuir 18:9087

    Article  CAS  Google Scholar 

  89. Schmickler W (1996) Interfacial electrochemistry. Oxford University Press, New York

    Google Scholar 

  90. Drews TO, Radisik A, Erlenbacher J, Braatz RD, Searson PC, Alkire RC (2006) J Electrochem Soc 153:C434

    Article  CAS  Google Scholar 

  91. Stephens RM, Alkire RC (2007) J Electrochem Soc 154:D418

    Article  CAS  Google Scholar 

  92. Bezzola A, Bales BB, Alkire RC, Petzold LR (2014) J Comp Phys 256:183

    Article  Google Scholar 

  93. Bezzola A, Bales BB, Petzold LR, Alkire RC (2014) J Electrochem Soc 161, E3001

    Article  CAS  Google Scholar 

  94. Brown G, Rikvold PA, Novotny MA, Wieckowski A (1999) J Electrochem Soc 146:1035

    Article  CAS  Google Scholar 

  95. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  96. Hölzle MH, Kolb DM (1994) Ber Bunsenges Phys Chem 98:330

    Article  Google Scholar 

  97. Hölzle MH, Retter U, Kolb DM (1994) J Electroanal Chem 371:101

    Article  Google Scholar 

  98. Hölzle MH, Zwing B, Kolb DM (1995) Electrochim Acta 40:1237

    Article  Google Scholar 

  99. Anderson AB (1975) J Chem Phys 62:1187

    Article  CAS  Google Scholar 

  100. Anderson AB, Grimes RW, Hong SY (1987) J Phys Chem 91:4245

    Article  CAS  Google Scholar 

  101. Mehandru S, Anderson AB (1989) Surf Sci 216:105

    Article  CAS  Google Scholar 

  102. Lopez MB, Estiu GL, Castro EA, Arvia AJ (1990) J Mol Struct (Theochem) 210:353

    Article  Google Scholar 

  103. Lopez MB, Estiu GL, Castro EA, Arvia AJ (1990) J Mol Struct (Theochem) 210:365

    Article  Google Scholar 

  104. Lopez MB, Estiu GL, Castro EA, Arvia AJ (1992) Surf Sci 277:184

    Article  CAS  Google Scholar 

  105. Mola EE, Blum L (1989) Int J Quantum Chem Quantum Chem Symp 23:687

    CAS  Google Scholar 

  106. Mola EE, Vicente JL (1992) Blum L (1992) Int J Quantum Chem Quant Chem Symp (Proc Int Symp At Mol Condens Matter Theory. Comput Methods 26:621

    CAS  Google Scholar 

  107. Mola EE, Appignanessi G, Vicente JL, Blum L (1993) Proc Electrochem Soc 93–5:186

    Google Scholar 

  108. Conway BE, Chacha JC (2004) J New Mater Electrochem Syst 7:231

    CAS  Google Scholar 

  109. Oviedo OA, Leiva EPM, Rojas MI (2006) Electrochim Acta 51:3526

    Article  CAS  Google Scholar 

  110. Isoardi EP, Allan NL, Barrera GD (2004) Phys Rev B 69:24303

    Article  CAS  Google Scholar 

  111. Reif F (1965) Fundamentals of statistical and thermal physics. McGraw-Hill Kogakusha, Tokyo

    Google Scholar 

  112. Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. Oxford University Press, Oxford

    Google Scholar 

  113. Schmickler W, Mariscal MM, Pötting K (2006) Chem Phys 320:149

    Article  CAS  Google Scholar 

  114. Mariscal MM, Leiva EPM, Pötting K, Schmickler W (2007) Appl Phys A 87:385

    Article  CAS  Google Scholar 

  115. Farigliano LM, Villarreal MA, Oviedo OA, Leiva EPM (2014) ECS Trans 58:3

    Article  Google Scholar 

  116. Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, New York

    Google Scholar 

  117. Haile JM (1992) Molecular dynamics simulation. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oviedo, O.A., Reinaudi, L., García, S.G., Leiva, E.P.M. (2016). Modelling of Underpotential Deposition on Bulk Electrodes. In: Underpotential Deposition. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-24394-8_5

Download citation

Publish with us

Policies and ethics