Skip to main content

Enhancement in Mathematical Abilities: A System Approach

  • Chapter
  • First Online:
Towards a Post-Bertalanffy Systemics

Part of the book series: Contemporary Systems Thinking ((CST))

Abstract

A body of literature evidences the importance of enhancement in the development of mathematical abilities. The most recent researches showed that infants are capable of discriminating different sets of numbers, so it is important to understand the role of the environment and educational system in the promotion and development of this potential. The main role in the enhancement in mathematical abilities is played by the interventions which support the development of these abilities in concomitance with their emergence. The present study has taken into consideration a number of variables in order to promote the best development of emerging skills and to prevent some difficulties related to the development of mathematical abilities. In this regard, the enhancement is the result of the combination of cognitive and metacognitive factors. Among the cognitive factors, as the literature shows, the visuo-spatial component has a very important role in the development of mathematical abilities. Also, the introduction of technological tools is useful to create a systemic approach in the development and enhancement of mathematical abilities. The main goal of the current study was to investigate the impact of a systemic intervention on the improvement of mathematical skills in 144 third graders of several schools located in Italy. Participants were subjected to the training (paper and/or multimedia) for enhancing numerical abilities and/or visuo-spatial abilities. Our findings evidence the positive effect of the different types of training for the empowerment of numerical abilities. In particular, the combination of computerized and pencil-and-paper versions of visuo-spatial and mathematical training are more effective than the single execution of the software or of the pencil-and-paper treatment. Our results show that, when properly stimulated, the subject’s cognitive and metacognitive processes can support the improvement of individual skills. The enhancement tools are essential for school and families (they can use the same trainings). The design and the implementation of educational interventions with a systemic vision aimed at producing a cognitive enhancement that can be effective in the course of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning. Methods and Development, (3rd edition), Boston: Allyn & Bacon.

    Google Scholar 

  2. Antonietti, A., & Cantoia, M. (2001). Imparare con il computer. Come costruire contesti di apprendimento per il software. Trento: Erickson.

    Google Scholar 

  3. Bellacchi, C., Scalisi, T.G., Cannoni, E., & Cornoldi, C. (2008). CPM - Coloured progressive matrice. Firenze: OS.

    Google Scholar 

  4. Boekaerts, M., & Cascallar, E. (2006). How far have we moved toward the integration of theory and practice in self-regulation? Educational Psychology Review, 18(3), 199–210.

    Article  Google Scholar 

  5. Borkowski, J. G. (1996). Metacognition: Theory or chapter heading? Learning and Individual Differences, 8(4), 391–402.

    Article  Google Scholar 

  6. Briyant, P., & Squire, S. (2001). Children’s mathematics: Lost and found in space. In M. Gattis (Ed.), Spatial schemas and abstract thought. Cambridge: MIT Press.

    Google Scholar 

  7. Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical synthesis. Review of Educational Research, 65(3), 245–281.

    Article  Google Scholar 

  8. Butterwort, B. (1999). The mathematical brain. London: Macmillan (Italian Translation, Intelligenza Matematica. Milano: Rizzoli).

    Google Scholar 

  9. Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 3–18.

    Article  Google Scholar 

  10. Cornoldi, C. (2007). Difficoltà e disturbi dell’apprendimento. Bologna: Il Mulino.

    Google Scholar 

  11. Cornoldi, C., Lucangeli, D., & Bellina, M. (2012). Test AC-MT 6-11. Trento: Erickson.

    Google Scholar 

  12. De Beni, R., Pazzaglia, F., Molin, A., & Zamperlin, C. (2003). Psicologia cognitiva dell’apprendimento. Aspetti teorici e applicazioni. Trento: Erickson.

    Google Scholar 

  13. Fastame, M. C., & Antonini, R. (2011). Recupero in … Abilità visuo-spaziali. Percorsi e attività per la scuola primaria e secondaria di primo grado. Trento: Erickson.

    Google Scholar 

  14. Hildt, E. (2013). Cognitive enhancement—A critical look at the recent debate. In Cognitive enhancement (pp. 1–14). Netherlands: Springer.

    Chapter  Google Scholar 

  15. Kramarski, B., & Zeichner, O. (2001). Using technology to enhance mathematical reasoning: Effects of feedback and self-regulation learning. Educational Media International, 38(2–3), 77–82.

    Article  Google Scholar 

  16. Lucangeli, D., Ianniti, A., & Vettore, M. (2007). Lo sviluppo dell’intelligenza numerica. Roma: Carocci.

    Google Scholar 

  17. Lucangeli, D., & Mammarella, I. C. (2010). Psicologia della cognizione numerica. Approcci teorici, valutazione e intervento. Milano: Franco Angeli.

    Google Scholar 

  18. Lucangeli, D., Poli, S., & Molin, A. (2011). Sviluppare l’intelligenza numerica II. Trento: Erickson.

    Google Scholar 

  19. Lucangeli, D., & Tressoldi, P. E. (2002). Lo sviluppo della conoscenza numerica: alle origine del capire i numeri. Giornale Italiano di Psicologia, 4, 701–723.

    Google Scholar 

  20. Lucangeli, D., Tressoldi, P. E., & Cendron, M. (1998). SPM-Test delle abilità di soluzione dei problemi matematici. Trento: Erickson.

    Google Scholar 

  21. Mayer, R. E. (2003). The promise of multimedia learning: Using the same instructional design methods across different media. Learning and Instruction, 13(2), 125–139.

    Article  Google Scholar 

  22. Muldoon, K., Towse, J., Simms, V., Perra, O., & Menzies, V. (2013). A longitudinal analysis of estimation, counting skills, and mathematical ability across the first school year. Developmental Psychology, 49(2), 250.

    Article  Google Scholar 

  23. Musso, M., Kyndt, E., Cascallar, E., & Dochy, F. (2012). Predicting mathematical performance: The effect of cognitive processes and self-regulation factors. Education Research International, 2012, Article ID 250719, 13 pages, 2012. Doi 10.1155/2012/250719.

    Google Scholar 

  24. Penna, M. P. (2002). The emergence of strategies in cognitive development. In Emergence in complex, cognitive, social, and biological systems (pp. 55–62). New York: Springer.

    Chapter  Google Scholar 

  25. Penna, M. P., & Pessa, E. (1996). Le interfacce uomo-macchina. Roma: Di Renzo.

    Google Scholar 

  26. Penna, M.P., Stara, V., & Bonfiglio, N. (2002). A systemic proposal on the use of a new technology as a learning tool in school context. In Emergence in complex, cognitive, social, and biological systems (pp. 153–157). New York: Springer.

    Chapter  Google Scholar 

  27. Pessa, E. (2002). What is emergence? In Emergence in complex, cognitive, social, and biological systems (pp. 379–382). New York: Springer.

    Chapter  Google Scholar 

  28. Praet, M., & Desoete, A. (2014). Enhancing young children’s arithmetic skills through non-intensive, computerised kindergarten interventions: A randomised controlled study. Teaching and Teacher Education, 39, 56–65.

    Article  Google Scholar 

  29. Räsänen, P., Salminen, J., Wilson, A.J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24(4), 450–472.

    Article  Google Scholar 

  30. Siegler, R. S. (1996). Emerging minds. New York: Oxford University Press.

    Google Scholar 

  31. Siegler, R. S., Liebert, D. E., & Liebert, R. M. (1973). Inhelder and Piaget’s pendulum problem: Teaching preadolescents to act as scientists. Developmental Psychology, 9(1), 97.

    Article  Google Scholar 

  32. Stillman, G. (2014). Metacognition. In Encyclopedia of mathematics education (pp. 445–447). Dordrecht: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lidia Mascia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mascia, M.L., Agus, M., Fastame, M.C., Addis, A. (2016). Enhancement in Mathematical Abilities: A System Approach. In: Minati, G., Abram, M., Pessa, E. (eds) Towards a Post-Bertalanffy Systemics. Contemporary Systems Thinking. Springer, Cham. https://doi.org/10.1007/978-3-319-24391-7_25

Download citation

Publish with us

Policies and ethics