Skip to main content

Fractal Self-similarity: From Geometric Structures to Coherent Dynamics

  • Chapter
  • First Online:
Towards a Post-Bertalanffy Systemics

Part of the book series: Contemporary Systems Thinking ((CST))

  • 712 Accesses

Abstract

Under the conditions of constant magnetic field and harmonic scalar potential, electrodynamics appears to be isomorph to fractal self-similar structures and squeezed coherent states. Relevance of coherent states and electromagnetic interaction and ubiquity of fractals point to a unified vision of Nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vitiello, G. (2014). On the isomorphism between dissipative systems, fractal self-similarity and electrodynamics. Toward an integrated vision of nature. Systems, 2, 203–216. doi:10.3390/systems2020203.

    Google Scholar 

  2. Vitiello, G. (2012). Fractals, coherent states and self-similarity induced noncommutative geometry. Physics Letters, A376, 2527–2532.

    Article  Google Scholar 

  3. Vitiello, G. (2009). Coherent states, fractals and brain waves. New Mathematics and Natural Computation, 5, 245–264.

    Article  Google Scholar 

  4. Vitiello, G. (2009). Fractals and the Fock-Bargmann representation of coherent states. In W. Lawless, K. van Rijsbergen, & M. Klusch (Eds.), Quantum interaction. Lecture notes in artificial intelligence (pp. 6–16). Berlin/Heidelberg: Springer.

    Google Scholar 

  5. Vitiello, G. (2011). Topological defects, fractals and the structure of quantum field theory. In I. Licata & A.J. Sakaji (Eds.), Vision of oneness (pp. 155–179). Roma, Italy: Aracne Edizioni.

    Google Scholar 

  6. Celeghini, E., Graziano, E., Nakamura, K., & Vitiello, G. (1992). Finite temperature quantum field theory and gauge field. Physics Letters, B285, 98–102.

    Article  Google Scholar 

  7. Blasone, M., Graziano, E., Pashaev, O.K., & Vitiello, G. (1996). Dissipation and topologically massive gauge theories in the pseudo-Euclidean plane. Annals of Physics, 252, 115–132.

    Article  Google Scholar 

  8. Marzuoli, A., Raffa, F.A., & Rasetti, M. (2014). Where do bosons actually belong? Journal of Physics A Mathematical and Theoretical, 06, 47(27). doi:10.1088/1751-8113/47/27/275202.

    Google Scholar 

  9. ‘t Hooft, G. (1999). Quantum gravity as a dissipative deterministic system. Classical and Quantum Gravity, 16, 3263–3279.

    Google Scholar 

  10. ‘t Hooft, G. (2007). A mathematical theory for deterministic quantum mechanics. Journal of Physics Conference Series, 67, 012015. doi:10.1088/1742-6596/67/1/012015.

    Google Scholar 

  11. Blasone, M., Jizba, P., & Vitiello, G. (2001). Dissipation and quantization. Physics Letters, A287, 205–210.

    Article  Google Scholar 

  12. Blasone, M., Celeghini, E., Jizba, P., & Vitiello, G. (2003). Quantization, group contraction and zero point energy. Physics Letters, A310, 393–399.

    Article  Google Scholar 

  13. Blasone, M., Jizba, P., Scardigli, F., & Vitiello, G. (2009). Dissipation and quantization in composite systems. Physics Letters, A373, 4106–4112.

    Article  Google Scholar 

  14. Celeghini, E., Rasetti, M., & Vitiello, G. (1992). Quantum dissipation. Annals of Physics, 215, 156–170.

    Article  Google Scholar 

  15. Blasone, M., Jizba, P., & Vitiello, G. (2011). Quantum field theory and its macroscopic manifestations London, UK: Imperial College Press.

    Book  Google Scholar 

  16. Blasone, M., Srivastava, Y. N., Vitiello, G., & Widom, A. (1998). Phase coherence in quantum Brownian motion. Annals of Physics, 267, 61–74.

    Article  Google Scholar 

  17. Srivastava, Y. N., Vitiello, G., & Widom, A. (1995). Quantum dissipation and quantum noise. Annals of Physics, 238, 200–207.

    Article  Google Scholar 

  18. Perelomov, A. (1986). Generalized coherent states and their applications. Berlin: Springer.

    Book  Google Scholar 

  19. Klauder, J. R., & Skagerstam, B. (1985). Coherent states. Singapore: World Scientific.

    Book  Google Scholar 

  20. Celeghini, E., De Martino, S., De Siena, S., Rasetti, M., & Vitiello, G. (1995). Quantum groups, coherent states, squeezing and lattice quantum mechanics. Annals of Physics, 241, 50–67.

    Article  Google Scholar 

  21. Celeghini, E., Rasetti, M., Tarlini, M., & Vitiello, G. (1989). SU(1, 1) squeezed states as damped oscillators. Modern Physics Letters, B3, 1213–1220.

    Article  Google Scholar 

  22. Celeghini, E., Rasetti, M., & Vitiello, G. (1991). On squeezing and quantum groups. Physical Review Letter, 66, 2056–2059.

    Article  Google Scholar 

  23. De Filippo, S., & Vitiello, G. (1977). Vacuum structure for unstable particles. Letter Nuovo Cimento, 19, 92–96.

    Article  Google Scholar 

  24. Bunde, A., & Havlin, S. (1995). Fractals in science Berlin: Springer

    Google Scholar 

  25. Peitgen, H. O., Jürgens, H., & Saupe, D. (1986). Chaos and fractals: New frontiers of science Berlin: Springer.

    Google Scholar 

  26. Andronov, A. A., Vitt, A. A., & Khaikin, S. E. (1966). Theory of oscillators Mineola: Dover Publication.

    Google Scholar 

  27. Sivasubramanian, S., Srivastava, Y. N., Vitiello, G., & Widom, A. (2003). Quantum dissipation induced noncommutative geometry. Physics Letter, A311, 97–105.

    Article  Google Scholar 

  28. Celeghini, E., De Martino, S., De Siena, S., Iorio, A., Rasetti, M., & Vitiello, G. (1998). Thermo field dynamics and quantum algebras. Physics Letters, A244, 455–461.

    Article  Google Scholar 

  29. Vitiello, G. (2007). Links. Relating different physical systems through the common QFT algebraic structure. In W. G. Unruh & R. Schuetzhold (Eds.), Quantum analogues: From phase transitions to black holes and cosmology. Lectures notes in physics (Vol. 718, pp. 165–205). Berlin: Springer.

    Google Scholar 

  30. Umezawa, H., Matsumoto, H., & Tachiki, M. (1982). Thermo field dynamics and condensed states. Amsterdam: North-Holland.

    Google Scholar 

  31. Umezawa, H. (1993). Advanced field theory: Micro, macro and thermal concepts. Melville: American Institute of Physics.

    Google Scholar 

  32. Bunkov, Y. M., & Godfrin, H. (2000). Topological defects and the nonequilibrium dynamics of symmetry breaking phase transitions. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  33. Vitiello, G. (2012). Struttura e Funzione. Una visione ecologica integrata. Rivista di Filosofia Neo-Scolastica, 4, 625–637.

    Google Scholar 

  34. Montagnier, L., Aissa, J., Del Giudice, E., Lavallee, C., Tedeschi, A., & Vitiello, G. (2011). DNA waves and water. Journal of Physics: Conference Series, 306, 012007. doi:10.1088/1742-6596/306/1/012007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vitiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vitiello, G. (2016). Fractal Self-similarity: From Geometric Structures to Coherent Dynamics. In: Minati, G., Abram, M., Pessa, E. (eds) Towards a Post-Bertalanffy Systemics. Contemporary Systems Thinking. Springer, Cham. https://doi.org/10.1007/978-3-319-24391-7_24

Download citation

Publish with us

Policies and ethics