Skip to main content

Patient Selection for Hypofractionated Whole Breast Radiation Therapy for Treatment of Early-Stage Breast Cancer

  • Chapter
  • First Online:
Short Course Breast Radiotherapy
  • 1020 Accesses

Abstract

Hypofractionated whole breast irradiation (HWBI) has been firmly established as a standard of care for postlumpectomy radiation for early-stage breast cancer, based in large part on the favorable 10-year results of prospective randomized trials from Canada and the United Kingdom. In the United States and other countries, the question now is no longer whether or not to do hypofractionation, but rather to which patients this should be offered instead of conventional fractionation. This chapter will review the criteria for patient selection to be used for the inclusion and exclusion of patients for whole breast hypofractionation in clinical practice today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montague ED. Experience with altered fractionation in radiation therapy of breast cancer. Radiology. 1968;90(5):962–6.

    Article  CAS  PubMed  Google Scholar 

  2. Fehlauer F, Tribius S, Höller U, et al. Long-term radiation sequelae after breast-conserving therapy in women with early-stage breast cancer: an observational study using the LENT-SOMA scoring system. Int J Radiat Oncol Biol Phys. 2003;55:651–8.

    Article  PubMed  Google Scholar 

  3. Fehlauer F, Tribius S, Alberti W, Rades D. Late effects and cosmetic results of conventional versus hypofractionated irradiation in breast-conserving therapy. Strahlenther Onkol. 2005;181(10):625–31.

    Article  PubMed  Google Scholar 

  4. Rostom AY, Pradhan DG, White WF. Once weekly irradiation in breast cancer. Int J Radiat Oncol Biol Phys. 1987;13(4):551–5.

    Article  CAS  PubMed  Google Scholar 

  5. Ortholan C, Hannoun-Levi JM, Ferrero JM, Largillier R, Courdi A. Long-term results of adjuvant hypofractionated radiotherapy for breast cancer in elderly patients. Int J Radiat Oncol Biol Phys. 2005;61(1):154–62.

    Article  PubMed  Google Scholar 

  6. Courdi A, Ortholan C, Hannoun-Levi JM, et al. Long-term results of hypofractionated radiotherapy and hormonal therapy without surgery for breast cancer in elderly patients. Radiother Oncol. 2006;79(2):156–61.

    Article  PubMed  Google Scholar 

  7. Kirova YM, Campana F, Savignoni A, et al. Breast-conserving treatment in the elderly: long-term results of adjuvant hypofractionated and normofractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2009;75(1):76–81.

    Article  PubMed  Google Scholar 

  8. Clark RM, Wilkinson RH, Miceli PN, MacDonald WD. Breast cancer. Experiences with conservation therapy. Am J Clin Oncol. 1987;10(6):461–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ash DV, Benson EA, Sainsbury JR, Round C, Head C. Seven-year follow-up on 334 patients treated by breast conserving surgery and short course radical postoperative radiotherapy: a report of the Yorkshire Breast Cancer Group. Clin Oncol (R Coll Radiol). 1995;7(2):93–6.

    Article  CAS  Google Scholar 

  10. Olivotto IA, Weir LM, Kim-Sing C, et al. Late cosmetic results of short fractionation for breast conservation. Radiother Oncol. 1996;41(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  11. Shelley W, Brundage M, Hayter C, Paszat L, Zhou S, Mackillop W. A shorter fractionation schedule for postlumpectomy breast cancer patients. Int J Radiat Oncol Biol Phys. 2000;47(5):1219–28.

    Article  CAS  PubMed  Google Scholar 

  12. Cox JD. Large-dose fractionation (hypofractionation). Cancer. 1985;55(9 Suppl):2105–11.

    Article  CAS  PubMed  Google Scholar 

  13. Fletcher GH. Hypofractionation: lessons from complications. Radiother Oncol. 1991;20(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  14. Sartor CI, Tepper JE. Is less more? Lessons in radiation schedules in breast cancer. J Natl Cancer Inst. 2002;94(15):1114–5.

    Article  PubMed  Google Scholar 

  15. Goffman TE, Glatstein E. Hypofractionation redux? J Clin Oncol. 2004;22(4):589–91.

    Article  PubMed  Google Scholar 

  16. Smith BD, Bentzen SM, Correa CR, et al. Fractionation for whole breast irradiation: an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Int J Radiat Oncol Biol Phys. 2011;81(1):59–68.

    Article  PubMed  Google Scholar 

  17. Hahn C, Kavanagh B, Bhatnagar A, et al. Choosing wisely: the American Society for Radiation Oncology’s top 5 list. Pract Radiat Oncol. 2014;4(6):349–55.

    Article  PubMed  Google Scholar 

  18. Fisher B, Anderson S, Bryant J, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347:1233–41.

    Article  PubMed  Google Scholar 

  19. Veronesi U, Cascinelli N, Mariani L, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002;347:1227–32.

    Article  PubMed  Google Scholar 

  20. Jatoi I, Proschan MA. Randomized trials of breast-conserving therapy versus mastectomy for primary breast cancer: a pooled analysis of updated results. Am J Clin Oncol. 2005;28(3):289–94.

    Article  PubMed  Google Scholar 

  21. Whelan TJ, Pignol J-P, Levine MN, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362(6):513–20.

    Article  CAS  PubMed  Google Scholar 

  22. Haviland JS, Owen JR, Dewar JA, et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013;14(11):1086–94.

    Article  PubMed  Google Scholar 

  23. Whelan T, MacKenzie R, Julian J, et al. Randomized trial of breast irradiation schedules after lumpectomy for women with lymph node-negative breast cancer. J Natl Cancer Inst. 2002;94(15):1143–50.

    Article  PubMed  Google Scholar 

  24. The START Trialists’ Group. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol. 2008;9:331–41.

    Article  PubMed Central  Google Scholar 

  25. The START Trialists’ Group. The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet. 2008;371:1098–107.

    Article  PubMed Central  Google Scholar 

  26. Bucholz TAGE, Bice WS, et al. Dosimetric analysis of intact breast irradiation in off-axis planes. Int J Radiat Oncol Biol Phys. 1997;39:261–7.

    Article  Google Scholar 

  27. Das IJCC, Fein DA, et al. Patterns of dose variability in radiation prescription of breast cancer. Radiother Oncol. 1997;44:83–9.

    Article  CAS  PubMed  Google Scholar 

  28. Neal AJ, Torr M, Helyer S, Yarnold JR. Correlation of breast dose heterogeneity with breast size using 3D CT planning and dose-volume histograms. Radiother Oncol. 1995;34(3):210–8.

    Article  CAS  PubMed  Google Scholar 

  29. Fisher J, Scott C, Stevens R, et al. Randomized phase III study comparing best supportive care to Biafine as a prophylactic agent for radiation-induced skin toxicity for women undergoing breast irradiation: Radiation Therapy Oncology Group (RTOG) 97–13. Int J Radiat Oncol Biol Phys. 2000;48:1307–10.

    Article  CAS  Google Scholar 

  30. Back M, Guerrieri M, Wratten C, Steigler A. Impact of radiation therapy on acute toxicity in breast conservation therapy for early breast cancer. Clin Oncol. 2004;16(1):12–6.

    Article  CAS  Google Scholar 

  31. Pignol JP, Olivotto I, Rakovitch E, et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol. 2008;26(13):2085–92.

    Article  PubMed  Google Scholar 

  32. Freedman G, Li T, Nicolaou N, Anderson P. Breast intensity modulated radiation therapy reduces time spent with acute dermatitis for women of all breast sizes during radiation. Int J Radiat Oncol Biol Phys. 2009;74:689–94.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yarnold J, Bentzen SM, Coles C, Haviland J. Hypofractionated whole-breast radiotherapy for women with early breast cancer: myths and realities. Int J Radiat Oncol Biol Phys. 2011;79(1):1–9.

    Article  PubMed  Google Scholar 

  34. Vicini FA, Sharpe M, Kestin L, et al. Optimizing breast cancer treatment efficacy with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2002;54(5):1336–44.

    Article  PubMed  Google Scholar 

  35. Donovan E, Bleakley N, Denholm E, et al. Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother Oncol. 2007;82(3):254–64.

    Article  PubMed  Google Scholar 

  36. Harsolia A, Kestin L, Grills I, et al. In clinical toxicities compared with conventional wedge-based breast radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68:1375–80.

    Article  PubMed  Google Scholar 

  37. Keller LM, Sopka DM, Li T, et al. Five-year results of whole breast intensity modulated radiation therapy for the treatment of early stage breast cancer: the Fox Chase Cancer Center experience. Int J Radiat Oncol Biol Phys. 2012;84(4):881–7.

    Article  PubMed  Google Scholar 

  38. Merchant TE, McCormick B. Prone position breast irradiation. Int J Radiat Oncol Biol Phys. 1994;30(1):197–203.

    Article  CAS  PubMed  Google Scholar 

  39. Hardee ME, Raza S, Becker SJ, et al. Prone hypofractionated whole-breast radiotherapy without a boost to the tumor bed: comparable toxicity of IMRT versus a 3D conformal technique. Int J Radiat Oncol Biol Phys. 2012;82(3):e415–23.

    Article  PubMed  Google Scholar 

  40. Dorn PL, Corbin KS, Al-Hallaq H, Hasan Y, Chmura SJ. Feasibility and acute toxicity of hypofractionated radiation in large-breasted patients. Int J Radiat Oncol Biol Phys. 2012;83(1):79–83.

    Article  PubMed  Google Scholar 

  41. Cuzick J, Stewart H, Rutqvist L, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 1994;12:447–53.

    Article  CAS  PubMed  Google Scholar 

  42. Darby S, McGale P, Correa C, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–16.

    Article  CAS  PubMed  Google Scholar 

  43. Paszat LF, Mackillop WJ, Groome PA, Boyd C, Schulze K, Holowaty E. Mortality from myocardial infarction after adjuvant radiotherapy for breast cancer in the Surveillance, Epidemiology, and End-Results cancer registries. J Clin Oncol. 1998;16:2625–31.

    Article  CAS  PubMed  Google Scholar 

  44. Hurkmans CW, Cho BC, Damen E, Zijp L, Mijnheer BJ. Reduction of cardiac and lung complication probabilities after breast irradiation using conformal radiotherapy with or without intensity modulation. Radiother Oncol. 2002;62(2):163–71.

    Article  PubMed  Google Scholar 

  45. Chui CS, Hong L, Hunt M, McCormick B. A simplified intensity modulated radiation therapy technique for the breast. Med Phys. 2002;29(4):522–9.

    Article  PubMed  Google Scholar 

  46. Li JS, Freedman GM, Price R, et al. Clinical implementation of intensity-modulated tangential beam irradiation for breast cancer. Med Phys. 2004;31(5):1023–31.

    Article  CAS  PubMed  Google Scholar 

  47. Formenti SC, DeWyngaert JK, Jozsef G, Goldberg JD. Prone vs supine positioning for breast cancer radiotherapy. JAMA. 2012;308(9):861–3.

    Article  CAS  PubMed  Google Scholar 

  48. Eldredge-Hindy H, Lockamy V, Crawford A, et al. Active Breathing Coordinator reduces radiation dose to the heart and preserves local control in patients with left breast cancer: report of a prospective trial. Pract Radiat Oncol. 2015;5(1):4–10.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Herbert C, Nichol A, Olivotto I, et al. The impact of hypofractionated whole breast radiotherapy on local relapse in patients with Grade 3 early breast cancer: a population-based cohort study. Int J Radiat Oncol Biol Phys. 2012;82(5):2086–92.

    Article  PubMed  Google Scholar 

  50. Bane AL, Whelan TJ, Pond GR, et al. Tumor factors predictive of response to hypofractionated radiotherapy in a randomized trial following breast conserving therapy. Ann Oncol. 2014;25(5):992–8.

    Article  CAS  PubMed  Google Scholar 

  51. Romestaing P, Lehingue Y, Carrie C, et al. Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol. 1997;15:963–8.

    Article  CAS  PubMed  Google Scholar 

  52. Bartelink H, Horiot J-C, Poortmans PM, et al. Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881–10882 trial. J Clin Oncol. 2007;25:3259–65.

    Article  PubMed  Google Scholar 

  53. Yarnold J, Ashton A, Bliss J, et al. Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: long-term results of a randomised trial. Radiother Oncol. 2005;75:9–17.

    Article  PubMed  Google Scholar 

  54. Owen JR, Ashton A, Bliss JM, et al. Effect of radiotherapy fraction size on tumour control in patients with early-stage breast cancer after local tumour excision: long-term results of a randomised trial. Lancet Oncol. 2006;7(6):467–71.

    Article  PubMed  Google Scholar 

  55. Chan EK, Tabarsi N, Tyldesley S, et al. Patient-reported long-term cosmetic outcomes following short fractionation whole breast radiotherapy with boost. Am J Clin Oncol. 2014 May 12. [Epub ahead of print].

    Google Scholar 

  56. Clark RM, Whelan T, Levine M, et al. Randomized clinical trial of breast irradiation following lumpectomy and axillary dissection for node-negative breast cancer: an update. J Natl Cancer Inst. 1996;88:1659–64.

    Article  CAS  PubMed  Google Scholar 

  57. Fyles A, Manchul L, McCready D, et al. Updated results of a randomized trial of tamoxifen with or without radiation in women over 50 years of age with T1/2 N0 breast cancer. Radiother Oncol. 2006;80:S1.

    Article  Google Scholar 

  58. Williamson D, Dinniwell R, Fung S, Pintilie M, Done SJ, Fyles AW. Local control with conventional and hypofractionated adjuvant radiotherapy after breast-conserving surgery for ductal carcinoma in-situ. Radiother Oncol. 2010;95(3):317–20.

    Article  PubMed  Google Scholar 

  59. Kim JY, Jung SY, Lee S, et al. Phase 2 trial of accelerated, hypofractionated whole-breast irradiation of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions in early-stage breast cancer. Int J Radiat Oncol Biol Phys. 2013;87(5):1037–42.

    Article  PubMed  Google Scholar 

  60. Formenti SC, Gidea-Addeo D, Goldberg JD, et al. Phase I-II trial of prone accelerated intensity modulated radiation therapy to the breast to optimally spare normal tissue. J Clin Oncol. 2007;25(16):2236–42.

    Article  PubMed  Google Scholar 

  61. Chadha M, Woode R, Sillanpaa J, et al. Results using 3-week accelerated whole-breast (WB) radiation therapy (RT) and concomitant boost for early-stage node negative breast cancer. Int J Radiat Oncol Biol Phys. 2009;75:S77.

    Article  Google Scholar 

  62. Freedman GM, Anderson PR, Bleicher RJ, et al. Five-year local control in a phase II study of hypofractionated intensity modulated radiation therapy with an incorporated boost for early stage breast cancer. Int J Radiat Oncol Biol Phys. 2012;84(4):888–93.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Scorsetti M, Alongi F, Fogliata A, et al. Phase I-II study of hypofractionated simultaneous integrated boost using volumetric modulated arc therapy for adjuvant radiation therapy in breast cancer patients: a report of feasibility and early toxicity results in the first 50 treatments. Radiat Oncol. 2012;7:145.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chadha M, Woode R, Sillanpaa J, et al. Early-stage breast cancer treated with 3-week accelerated whole-breast radiation therapy and concomitant boost. Int J Radiat Oncol Biol Phys. 2013;86(1):40–4.

    Article  PubMed  Google Scholar 

  65. Toledano AH, Bollet MA, Fourquet A, et al. Does concurrent radiochemotherapy affect cosmetic results in the adjuvant setting after breast-conserving surgery? Results of the ARCOSEIN multicenter, phase III study: patients’ and doctors’ views. Int J Radiat Oncol Biol Phys. 2007;68(1):66–72.

    Article  PubMed  Google Scholar 

  66. Hill-Kayser CE, Vachani C, Hampshire MK, Di Lullo GA, Metz JM. Cosmetic outcomes and complications reported by patients having undergone breast-conserving treatment. Int J Radiat Oncol Biol Phys. 2012;83(3):839–44.

    Article  PubMed  Google Scholar 

  67. Das IJ, Cheng EC, Freedman G, Fowble B. Lung and heart dose volume analyses with CT simulator in tangential field irradiation of breast cancer. Int J Radiat Oncol Biol Phys. 1998;42:11–9.

    Article  CAS  PubMed  Google Scholar 

  68. Bates T, Evans R. Report of the independent review commissioned by the Royal College of Radiologists into brachial plexus neuropathy following radiotherapy for breast carcinoma. London: Royal College of Radiologists; 1995.

    Google Scholar 

  69. Whelan T, Olivotto I, Ackerman I, et al. NCIC-CTG MA.20: An intergroup trial of regional nodal irradiation in early breast cancer. Journal of clinical oncology. 2011;29(18):suppl LBA1003.

    Google Scholar 

  70. Erven K, Weltens C, Nackaerts K, Fieuws S, Decramer M, Lievens Y. Changes in pulmonary function up to 10 years after locoregional breast irradiation. Int J Radiat Oncol Biol Phys. 2012;82(2):701–7.

    Article  PubMed  Google Scholar 

  71. Johansson S, Svensson H, Denekamp J. Dose response and latency for radiation-induced fibrosis, edema, and neuropathy in breast cancer patients. Int J Radiat Oncol Biol Phys. 2002;52:1207–19.

    Article  PubMed  Google Scholar 

  72. Fisher B, Dignam J, Wolmark N, et al. Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol. 1998;16:441–52.

    Article  CAS  PubMed  Google Scholar 

  73. Parikh RR, Haffty BG, Lannin D, Moran MS. Ductal carcinoma in situ with microinvasion: prognostic implications, long-term outcomes, and role of axillary evaluation. Int J Radiat Oncol Biol Phys. 2012;82(1):7–13.

    Article  PubMed  Google Scholar 

  74. Ciervide R, Dhage S, Guth A, et al. Five year outcome of 145 patients with ductal carcinoma in situ (DCIS) after accelerated breast radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83(2):e159–64.

    Article  PubMed  Google Scholar 

  75. Hathout L, Hijal T, Theberge V, et al. Hypofractionated radiation therapy for breast ductal carcinoma in situ. Int J Radiat Oncol Biol Phys. 2013;87(5):1058–63.

    Article  PubMed  Google Scholar 

  76. Lalani N, Paszat L, Sutradhar R, et al. Long-term outcomes of hypofractionation versus conventional radiation therapy after breast-conserving surgery for ductal carcinoma in situ of the breast. Int J Radiat Oncol Biol Phys. 2014;90(5):1017–24.

    Article  PubMed  Google Scholar 

  77. Radiation Therapy Oncology Group. A phase III trial of accelerated whole breast irradiation with hypofracitonation plus concurrent boost versus standard whole breast irradiation plus sequential boost for early-stage breast cancer. Available from URL: www.rtog.org/clinicaltrials/protocoltable/studydetails.aspx?study=1005. Accessed 1 Apr 2015.

  78. IMPORT Trial Management Group. IMPORT HIGH: randomised trial testing dose escalated intensity modulated radiotherapy for women treated by breast conservation surgery and appropriate systemic therapy for early breast cancer. Available from URL: www.cancer.gov/clinicaltrials/search/view?cdrid=629770&version=healthprofessional. Accessed 1 Apr 2015.

Download references

Conflict of Interest Statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Freedman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freedman, G.M. (2016). Patient Selection for Hypofractionated Whole Breast Radiation Therapy for Treatment of Early-Stage Breast Cancer. In: Arthur, D., Vicini, F., Wazer, D., Khan, A. (eds) Short Course Breast Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-319-24388-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24388-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24386-3

  • Online ISBN: 978-3-319-24388-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics