Skip to main content

The Radiobiology of Breast Radiotherapy

  • Chapter
  • First Online:
Book cover Short Course Breast Radiotherapy

Abstract

In order to fully understand the possible impact of different radiotherapy techniques on a cancer, it is essential to have knowledge of the underlying radiobiology of both the cancer and the radiotherapeutic method. Without this, toxicity or control could be compromised when changing fractionation or delivery. The radiobiology of conventional external beam radiotherapy (EBRT) is relatively well understood, whereas the radiobiology of hypofractionated techniques is less clear. The challenge of integrating radiobiology into daily practice may perhaps become more straightforward as large randomized trials start to include radiobiology as a primary focus [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The START Trialists Group. The UK standardisation of breast radiotherapy (START) trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol. 2008;9:331–41.

    Article  Google Scholar 

  2. The START Trialists Group. The UK standardisation of breast radiotherapy (START) trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet. 2008;371:1098–107.

    Article  Google Scholar 

  3. Dale RG. The application of the linear quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol. 1985;58:515–28.

    Article  CAS  PubMed  Google Scholar 

  4. Joiner MC, van der Kogel AJ. In: Steel GG, editors. Basic clinical radiobiology. Arnold; 1997. p. 106–22.

    Google Scholar 

  5. Fowler J. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62:679–94.

    Article  CAS  PubMed  Google Scholar 

  6. Bentzen S, Baumann M. In: Steel GG, editors. Basic clinical radiobiology. Arnold; 2002. p. 134–46.

    Google Scholar 

  7. Rosenstein B, Lymberis S, Formenti S. Biologic comparison of partial breast irradiation protocols. Int J Radiat Oncol Biol Phys. 2004;60:1393–404.

    Article  PubMed  Google Scholar 

  8. Rew DA, Wilson GD. Cell production rates in human tissues and tumours and their significance. Part II: clinical data. Eur J Surg Oncol. 2000;26:405–17.

    Article  CAS  PubMed  Google Scholar 

  9. Peer PG, van Dijck JA, Hendriks JH, et al. Age-dependent growth rate of primary breast cancer. Cancer. 1993;71:3547–51.

    Article  CAS  PubMed  Google Scholar 

  10. Pop LA, van den Broek JF, Visser AG, et al. Constraints in the use of repair half times and mathematical modelling for the clinical application of HDR and PDR treatment schedules as an alternative for LDR brachytherapy. Radiother Oncol. 1996;38:153–62.

    Article  CAS  PubMed  Google Scholar 

  11. Dale RG. What minimum number of fractions is required with high dose rate remote afterloading? Br J Radiol. 1987;60:300–2.

    Article  Google Scholar 

  12. Orton C. High dose rate brachytherapy may be radiobiologically superior to low dose rate due to slow repair of late responding normal tissue cells. Int J Radiat Oncol Biol Phys. 2001;49:183–9.

    Article  CAS  PubMed  Google Scholar 

  13. Bentzen SM, Saunders MI, Dische S. Repair halftimes estimated from observations of treatment-related morbidity after CHART or conventional radiotherapy in head and neck cancer. Radiother Oncol. 1999;53:219–26.

    Article  CAS  PubMed  Google Scholar 

  14. Fowler JF. Is repair of DNA strand break damage from ionizing radiation second-order rather than first-order? A simpler explanation of apparently multiexponential repair. Radiat Res. 1999;152:124–36.

    Article  CAS  PubMed  Google Scholar 

  15. Millar WT, Canney PA. Derivation and application of equations describing the effects of fractionated protracted irradiation, based on multiple and incomplete repair processes. Part 1L: derivation of equations. Int J Radio Biol. 1993;64:275–91.

    Article  CAS  Google Scholar 

  16. Fowler JF. Half-times of irradiation recovery in accelerated partial breast irradiation: Incomplete recovery as a potentially dangerous enhancer of radiation damage. J Canc Res Ther. 2013;1:230–4.

    Article  Google Scholar 

  17. Matthews J, Meeker B, Chapman J. Response of human tumor cell lines in vitro to fractionated irradiation. Int J Radiat Oncol Biol Phys. 1989;16:133–8.

    Article  CAS  PubMed  Google Scholar 

  18. Steel G, Deacon J, Duschesne G. The dose-rate effect in human tumour cells. Radiother Oncol. 1987;9:299–310.

    Article  CAS  PubMed  Google Scholar 

  19. Cohen L. Radiotherapy in breast cancer. The dose-time relationship: theoretical considerations. Br J Radiol. 1952;25:636–42.

    Article  CAS  PubMed  Google Scholar 

  20. Douglas B, Castro J. Novel fractionation schemes and high linear energy transfer. Prog Exp Tumor Res. 1984;28:152–65.

    Article  CAS  PubMed  Google Scholar 

  21. Owen J, et al. Effect of radiotherapy fraction size on tumor control in patients with early-stage breast cancer after local tumour excision: long-term results of a randomised trial. Lancet Oncol. 2006;7:467–71.

    Article  PubMed  Google Scholar 

  22. Yarnold J, et al. Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: long-term results of a randomised trial. Radiother Oncol. 2005;75:9–17.

    Article  PubMed  Google Scholar 

  23. Whelan T, et al. Randomized trial of breast irradiation schedules after lumpectomy for women with lymph node-negative breast cancer. J Natl Cancer Inst. 2002;94:1143–50.

    Article  PubMed  Google Scholar 

  24. Bartelink H, et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med. 2001;345:1378–87.

    Article  CAS  PubMed  Google Scholar 

  25. Weichselbaum RR, et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci U S A. 2008;105:18490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Whelan TJ, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362:513–20.

    Article  CAS  PubMed  Google Scholar 

  27. Haviland JS, Yarnold JR, Bentzen SM. Hypofractionated radiotherapy for breast cancer. N Engl J Med. 2010;362:1843.

    Article  CAS  PubMed  Google Scholar 

  28. Mumbrekar KD, et al. Influence of double-strand break repair on radiation therapy-induced acute skin reactions in breast cancer patients. Int J Radiat Oncol Biol Phys. 2014;88:671–6.

    Article  PubMed  Google Scholar 

  29. Li ZL, et al. Expression of Smac induced by the Egr1 promoter enhances the radiosensitivity of breast cancer cells. Cancer Gene Ther. 2014;21:142–9.

    Article  CAS  PubMed  Google Scholar 

  30. ICRU 50. Prescribing, recording and reporting photon beam therapy. Report No. 50. International Commission on Radiation Units and Measurements, Bethesda, 1993.

    Google Scholar 

  31. Formenti SC. External-beam partial-breast irradiation. Semin Radiat Oncol. 2005;15:92–9.

    Article  PubMed  Google Scholar 

  32. Formenti SC, et al. Prone accelerated partial breast irradiation after breast conserving surgery: preliminary clinical results and dose-volume histogram analysis. Int J Radiat Oncol Biol Phys. 2004;60:493–504.

    Article  PubMed  Google Scholar 

  33. Bartelink H, et al. Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881–10882 trial. J Clin Oncol. 2007;25:3259–65.

    Article  PubMed  Google Scholar 

  34. Veronesi U, Luini A, Del Vecchio M, et al. Radiotherapy after breast-preserving surgery in women with localised cancer of the breast. N Engl J Med. 1993;328:1587–91.

    Article  CAS  PubMed  Google Scholar 

  35. Stewart AJ, et al. Dose volume histogram analysis of normal structures associated with accelerated partial breast irradiation delivered by high dose rate brachytherapy and comparison with whole breast external beam radiotherapy fields. Radiother Oncol. 2008;19:38.

    Google Scholar 

  36. Khan AJ, et al. A dosimetric comparison of three-dimensional conformal, intensity-modulated radiation therapy and MammoSite partial-breast irradiation. Brachytherapy. 2006;5:183–8.

    Article  PubMed  Google Scholar 

  37. Kozak KR, et al. Accelerated partial-breast irradiation using proton beams: initial clinical experience. Int J Radiat Oncol Biol Phys. 2006;66:691–8.

    Article  PubMed  Google Scholar 

  38. Ribero GG, Magee B, Swindell R, Harris M, Banergee SS. The Christie hospital breast conservation trial: an update at 8 years from inception. Clin Oncol (R Coll Radiol). 1993;5:278–83.

    Article  Google Scholar 

  39. International Commission on Radiation Units and Measurements. Dose and volume specifications for reporting intracavitary therapy in gynecology (report 38). International Commission on Radiation Units and Measurements, 1985.

    Google Scholar 

  40. Lawneda BD, et al. Dose-volume analysis of radiotherapy for T1N0 invasive breast cancer treated by local excision and partial breast irradiation by low-dose-rate interstitial implant. Int J Radiat Oncol Biol Phys. 2003;56:671–80.

    Article  Google Scholar 

  41. http://www.apbi.uni-erlangen.de/outline/outline.html. Accessed 17 Aug 2007.

  42. Polgár C, et al. High-dose-rate brachytherapy alone versus whole breast radiotherapy with or without tumor bed boost after breast-conserving surgery: seven year results of a comparative study. Int J Radiat Oncol Biol Phys. 2004;60:1173–81.

    Article  PubMed  Google Scholar 

  43. Arthur DW, Koo D, Zwicker RD, et al. Partial breast brachytherapy after lumpectomy: Low-dose-rate and high-dose-rate experience. Int J Radiat Oncol Biol Phys. 2003;56:681–9.

    Article  PubMed  Google Scholar 

  44. Herskind C, Steil V, Kraus-Tiefenbacher U, Wenz F. Radiobiological aspects of intraoperative radiotherapy (IORT) with isotropic low-energy X rays for early-stage breast cancer. Radiat Res. 2005;163:208–15.

    Article  CAS  PubMed  Google Scholar 

  45. Armpilia C, Dale RG, Sandilos P, Vlachos L. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy. Phys Med Biol. 2006;51:4399–411.

    Article  CAS  PubMed  Google Scholar 

  46. Stewart AJ, et al. Does equivalent uniform dose affect toxicity for high dose rate brachytherapy using the MammoSite applicator? Brachytherapy. 2009;8:138.

    Article  Google Scholar 

  47. Wazer DE, Kaufman S, Cuttino L, Dipetrillo T, Arthur DW. Accelerated partial breast irradiation: an analysis of variables associated with late toxicity and long-term cosmetic outcome after high-dose-rate interstitial brachytherapy. Int J Radiat Oncol Biol Phys. 2006;64:489–95.

    Article  PubMed  Google Scholar 

  48. Manning MA, Zwicker RD, Arthur DA, Arnfield M. Biologic treatment planning for high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys. 2001;49:839–45.

    Article  CAS  PubMed  Google Scholar 

  49. Edmundson GK, Vicini FA, Chen PY, et al. Dosimetric characteristics of the MammoSite RTS, a new breast brachytherapy applicator. Int J Radiat Oncol Biol Phys. 2002;52:1132–9.

    Article  PubMed  Google Scholar 

  50. Dickler A, Kirk M, Choo J, et al. Treatment volume and dose optimization of mammosite breast brachytherapy applicator. Int J Radiat Oncol Biol Phys. 2004;59:469–74.

    Article  PubMed  Google Scholar 

  51. Stewart AJ, et al. Equivalent uniform dose for accelerated partial breast irradiation using the MammoSite applicator. Radiother Oncol. 2013;108:232–5.

    Article  PubMed  Google Scholar 

  52. Dale RG, Coles IP, Deehan C, O’Donoghue JA. Calculation of integrated biological response in brachytherapy. Int J Radiat Oncol Biol Phys. 1997;38:633–42.

    Article  CAS  PubMed  Google Scholar 

  53. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 2007;24:103–10.

    Article  Google Scholar 

  54. Landis DM, et al. Variability among breast radiation oncologists in delineation of the postsurgical lumpectomy cavity. Int J Radiat Oncol Biol Phys. 2007;67:1299–308.

    Article  PubMed  Google Scholar 

  55. Orecchia R, Veronesi U. Intraoperative electrons. Semin Radiat Oncol. 2005;15:76–83.

    Article  PubMed  Google Scholar 

  56. Belletti B, et al. Targeted intraoperative radiotherapy impairs the stimulation of breast cancer cell proliferation and invasion caused by surgical wounding. Clin Cancer Res. 2008;14:1324–32.

    Article  Google Scholar 

  57. Mikeljevic JS, Haward R, Johnston C, et al. Trends in post-operative radiotherapy delay and the effect on survival in breast cancer patients treated with conservation surgery. Br J Cancer. 2004;90:1343–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wyatt RM, Beddoe AH, Dale RG. The effects of delays in radiotherapy treatment on tumour control. Phys Med Biol. 2003;48:139–55.

    Article  CAS  PubMed  Google Scholar 

  59. Vaidya JS, Joseph DJ, Tobias JS, et al. Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. Lancet. 2010;376:91–102.

    Article  PubMed  Google Scholar 

  60. Cordes N, Park CC. beta1 integrin as a molecular therapeutic target. Int J Radiat Biol. 2007;83:753–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atif J. Khan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, A.J., Stewart, A., Dale, R. (2016). The Radiobiology of Breast Radiotherapy. In: Arthur, D., Vicini, F., Wazer, D., Khan, A. (eds) Short Course Breast Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-319-24388-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24388-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24386-3

  • Online ISBN: 978-3-319-24388-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics