Skip to main content

Physics of APBI

  • Chapter
  • First Online:
Short Course Breast Radiotherapy
  • 986 Accesses

Abstract

APBI (accelerated partial-breast irradiation) treatments can be delivered using external beam or brachytherapy techniques. Interstitial brachytherapy using LDR (low-dose rate) Ir-192 seeds was historically the first modality used for APBI and consequently has the longest follow-up. More recently, external beam treatment has been used, either as photon, proton beams, or highly collimated electron beams, the latest being more often associated with intraoperative techniques relatively popular in Europe. New brachytherapy sources have been developed, including a miniature low-energy (~50 kV) electronic brachytherapy source and existent sources (e.g., Pd-103) commonly used as permanent seed implants for PBI, i.e., prostate cancer [47, 54, 56]. However, more commonly, APBI brachytherapy is associated with HDR (high-dose rate) treatment using Ir-192. The relatively high-energy source (~380 keV) at the tip of a thin wire is placed, using a computer-controlled afterloader device, in precisely specified positions for time intervals determined during the planning phase. Given the fact that the treatment is delivered very fast compared with the average half-time of cellular repair processes, one can establish equivalence between multiple sources loaded simultaneously (LDR) and one source, as is the basis for the HDR paradigm. Utilizing a planned combination of dwell positions, the single HDR source being successively placed in specified positions along applicators, and dwell times, and the specified time, the single HDR source remains at that position. Thus, after combining a well-determined target, a specified applicator, and a given strength of an Ir-192 source, an HDR treatment plan is generated through specifying dwell positions and their associated dwell times. The highly radioactive source cannot be placed in direct contact with tissues, and therefore, various devices or “applicators” are used to both contain and to guide the source in the desired positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrassy M, Niatetsky Y, Perez-Calatayud J. Controversies. Co-60 versus Ir-192 in HDR brachytherapy: scientific and technological comparison. Rev Fis Med. 2012;13(2):125–30.

    Google Scholar 

  2. Arthur DW, Koo D, Zwicker RD, Tong S, Bear HD, Kaplan BJ, et al. Partial breast brachytherapy after lumpectomy: low-dose-rate and high-dose-rate experience. Int J Radiat Oncol Biol Phys. 2003;56:681–9.

    Article  PubMed  Google Scholar 

  3. Baglan KL, Sharpe MB, Jaffray D, et al. Accelerated partial breast irradiation using 3D conformal radiation therapy (3D-CRT). Int J Radiat Oncol Biol Phys. 2003;55(2):302–11.

    Article  PubMed  Google Scholar 

  4. Baltas D, Sakelliou L, Zamboglou N. The physics of modern brachytherapy for oncology. New York: Taylor & Francis; 2007.

    Google Scholar 

  5. Beaulieu L, Carlsson Tedgren A, Carrier JF, Davis SD, Mourtada F, Rivard MJ, Thomson RM, Verhaegen F, Wareing TA, Williamson JF. Report of the task group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation. Med Phys. 2012;39(10):6208–36.

    Google Scholar 

  6. Brashears JH, Dragun AE, Jenrette JM. Late chest wall toxicity after MammoSite breast brachytherapy. Brachytherapy. 2009;8(1):19–25.

    Article  PubMed  Google Scholar 

  7. Carlsson AK, Ahnesjö A. The collapsed cone superposition algorithm applied to scatter dose calculations in brachytherapy. Med Phys. 2000;27(10):2320–32.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng CW, Mitra R, Li XA, Das IJ. Dose perturbations due to contrast medium and air in mammosite treatment: an experimental and Monte Carlo study. Med Phys. 2005;32(7):2279–87.

    Article  CAS  Google Scholar 

  9. Cuttino LW, Todor D, Arthur DW. CT-guided multi-catheter insertion technique for partial breast brachytherapy: reliable target coverage and dose homogeneity. Brachytherapy. 2005;4(1):10–7.

    Article  PubMed  Google Scholar 

  10. Cuttino LW, Todor D, Pacyna L, Lin PS, Arthur DW. Three-dimensional conformal external beam radiotherapy (3D-CRT) for accelerated partial breast irradiation (APBI): what is the correct prescription dose? Am J Clin Oncol. 2006;29(5):474–8.

    Article  PubMed  Google Scholar 

  11. Cuttino LW, Todor D, Rosu M, Arthur DW. Skin and chest wall dose with multi-catheter and MammoSite breast brachytherapy: Implications for late toxicity. Brachytherapy. 2009;8(2):223–6.

    Google Scholar 

  12. Dickler A, Kirk MC, Coon A, Bernard D, Zusag T, Rotmensch J, Wazer DE. A dosimetric comparison of Xoft Axxent Electronic Brachytherapy and iridium-192 high-dose-rate brachytherapy in the treatment of endometrial cancer. Brachytherapy. 2008;7(4):351–4.

    Article  PubMed  Google Scholar 

  13. Durante M. New challenges in high-energy particle radiobiology. Br J Radiol. 2014;87(1035):20130626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jagsi R, Ben-David MA, Moran JM, et al. Unacceptable cosmesis in a protocol investigating intensity-modulated radiotherapy with active breathing control for accelerated partial-breast irradiation. Int J Radiat Oncol Biol Phys. 2010;76(1):71–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kassas B, Mourtada F, Horton JL, Lane RG. Contrast effects on dosimetry of a partial breast irradiation system. Med Phys. 2004;31(7):1976–9.

    Article  CAS  PubMed  Google Scholar 

  16. Livi L, Buonamici FB, Simontacchi G, et al. Accelerated partial breast irradiation with IMRT: new technical approach and interim analysis of acute toxicity in a phase III randomized clinical trial. Int J Radiat Oncol Biol Phys. 2010;77(2):509–15.

    Article  PubMed  Google Scholar 

  17. Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys. 1993;20(6):1709–19.

    Article  CAS  PubMed  Google Scholar 

  18. Monroe JI, Dempsey JF, Dorton JA, Mutic S, Stubbs JB, Markman J, Williamson JF. Experimental validation of dose calculation algorithms for the GliaSite RTS, a novel 125I liquid-filled balloon brachytherapy applicator. Med Phys. 2001;28(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  19. Moon SH, Shin KH, Kim TH, et al. Dosimetric comparison of four different external beam partial breast irradiation techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, helical tomotherapy, and proton beam therapy. Radiother Oncol. 2009;90(1):66–73.

    Article  PubMed  Google Scholar 

  20. Munro JJ, Medich DC. Dosimetric comparison of three radiation sources used in balloon-based breast. Brachytherapy. 2007;6:80–81.

    Article  Google Scholar 

  21. Oliver M, Chen J, Wong E, Van Dyk J, Perera F. A treatment planning study comparing whole breast radiation therapy against conformal, IMRT and tomotherapy for accelerated partial breast irradiation. Radiother Oncol. 2007;82(3):317–23.

    Article  PubMed  Google Scholar 

  22. Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS, Suit HD. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):407–21.

    Article  PubMed  Google Scholar 

  23. Park CC, Yom SS, Podgorsak MB, Harris E, Price Jr RA, Bevan A, Pouliot J, Konski AA, Wallner PE, Electronic Brachytherapy Working Group. American Society for Therapeutic Radiology and Oncology (ASTRO) Emerging Technology Committee report on electronic brachytherapy. Int J Radiat Oncol Biol Phys. 2010;76(4):963–72.

    Article  PubMed  Google Scholar 

  24. Perez-Calatayud J, Ballester F, Das RK, Dewerd LA, Ibbott GS, Meigooni AS, Ouhib Z, Rivard MJ, Sloboda RS, Williamson JF. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO. Med Phys. 2012;39(5):2904–29.

    Google Scholar 

  25. Pignol JP, Keller B, Rakovitch E, Sankreacha R, Easton H, Que W. First report of a permanent breast 103Pd seed implant as adjuvant radiation treatment for early-stage breast cancer. Int J Radiat Oncol Biol Phys. 2006;64(1):176–81.

    Article  PubMed  Google Scholar 

  26. Poon E, Verhaegen F. Development of a scatter correction technique and its application to HDR 192Ir multicatheter breast brachytherapy. Med Phys. 2009;36:3703–13.

    Article  CAS  Google Scholar 

  27. Raffi JA, Davis SD, Hammer CG, Micka JA, Kunugi KA, Musgrove JE, Winston Jr JW, Ricci-Ott TJ, DeWerd LA. Determination of exit skin dose for 192Ir intracavitary accelerated partial breast irradiation with thermoluminescent dosimeters. Med Phys. 2010;37(6):2693–702.

    Article  CAS  PubMed Central  Google Scholar 

  28. Richardson SL, Pino R. Dosimetric effects of an air cavity for the SAVI partial breast irradiation applicator. Med Phys. 2010;37(8):3919–26.

    Article  Google Scholar 

  29. Rivard MJ, Davis SD, DeWerd LA, Rusch TW, Axelrod S. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent x-ray source: an electronic brachytherapy source. Med Phys. 2006;33:4020–32.

    Article  PubMed  Google Scholar 

  30. Rivard MJ, Venselaar JL, Beaulieu L. The evolution of brachytherapy treatment planning. Med Phys. 2009;36(6):2136–53.

    Article  PubMed  Google Scholar 

  31. Rusch TW, Davis SD, DeWerd LA, Burnside RR, Axelrod S, Rivard MJ. Characterization of a new miniature x-ray source for electronic brachytherapy. Med Phys. 2004;31:1807.

    Google Scholar 

  32. Shah C, Badiyan S, Ben Wilkinson J, Vicini F, Beitsch P, Keisch M, Arthur D, Lyden M. Treatment efficacy with accelerated partial breast irradiation (APBI): final analysis of the American Society of Breast Surgeons MammoSite(®) breast brachytherapy registry trial. Ann Surg Oncol. 2013;20(10):3279–85.

    Article  PubMed  Google Scholar 

  33. Taghian AG, Kozak KR, Katz A, Adams J, Lu HM, Powell SN, et al. Accelerated partial breast irradiation using proton beams: initial dosimetric experience. Int J Radiat Oncol Biol Phys. 2006;65:1404–10.

    Article  PubMed  Google Scholar 

  34. Todor D, Becker S, Orton CG. Point/counterpoint. Brachytherapy is better than external beam therapy for partial breast irradiation. Med Phys. 2013;40(8):080601.

    Article  PubMed  Google Scholar 

  35. Vargo JA, Verma V, Kim H, Kalash R, Heron DE, Johnson R, Beriwal S. Extended (5-year) outcomes of accelerated partial breast irradiation using MammoSite balloon brachytherapy: patterns of failure, patient selection, and dosimetric correlates for late toxicity. Int J Radiat Oncol Biol Phys. 2014;88(2):285–91.

    Article  PubMed  Google Scholar 

  36. Vicini FA, Remouchamps V, Wallace M, et al. Ongoing clinical experience utilizing 3D conformal external beam radiotherapy to deliver partial-breast irradiation in patients with early-stage breast cancer treated with breast-conserving therapy. Int J Radiat Oncol Biol Phys. 2003;57(5):1247–53.

    Article  PubMed  Google Scholar 

  37. Vicini F, Winter K, Straube W, et al. A phase I/II trial to evaluate three dimensional conformal radiation therapy confined to the region of the lumpectomy cavity for Stage I/II breast carcinoma: initial report of feasibility and reproducibility of Radiation Therapy Oncology Group (RTOG) Study 0319. Int J Radiat Oncol Biol Phys. 2005;63(5):1531–7.

    Article  PubMed  Google Scholar 

  38. Wang X, Zhang X, Li X, Amos RA, Shaitelman SF, Hoffman K, Howell R, Salehpour M, Zhang SX, Sun TL, Smith B, Tereffe W, Perkins GH, Buchholz TA, Strom EA, Woodward WA. Accelerated partial-breast irradiation using intensity-modulated proton radiotherapy: do uncertainties outweigh potential benefits? Br J Radiol. 2013;86(1029):20130176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wazer DE, Kaufman S, Cuttino L, DiPetrillo T, Arthur DW. Accelerated partial breast irradiation: an analysis of variables associated with late toxicity and long-term cosmetic outcome after high-dose-rate interstitial brachytherapy. Int J Radiat Oncol Biol Phys. 2006;64(2):489–95.

    Article  PubMed  Google Scholar 

  40. White SA, Landry G, Fonseca GP, Holt R, Rusch T, Beaulieu L, Verhaegen F, Reniers B. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source. Med Phys. 2014;41(6):061701.

    Article  PubMed  Google Scholar 

  41. Yu CX. Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol. 1995;40(9):1435–49.

    Article  CAS  PubMed  Google Scholar 

  42. Yu CX, Li XA, Ma L, et al. Clinical implementation of intensity modulated arc therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):453–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin A. Todor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Todor, D.A. (2016). Physics of APBI. In: Arthur, D., Vicini, F., Wazer, D., Khan, A. (eds) Short Course Breast Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-319-24388-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24388-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24386-3

  • Online ISBN: 978-3-319-24388-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics