Advertisement

After Plate Tectonics

  • Helge Kragh
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 54)

Abstract

Jordan and Dicke were not the only cosmologists who thought that varying gravity and other exotic ideas from fundamental physics might be relevant for the earth sciences. In the 1970s Fred Hoyle developed a revised steady-state model of the universe with implications for the history and structure of the Earth. In the same decade Dirac returned to his favourite hypothesis of a decreasing gravitational constant. Attempts to test the G(t) hypothesis in one of its several versions came from physics, astronomy and geology until it gradually became clear that the constant is indeed constant—as far as measurements can tell. In the same period the expanding Earth hypothesis ran out of power and separated increasingly from mainstream geophysics. The hypothesis of a smaller Earth in the past continued to be defended but without being taken seriously any longer by the majority of earth scientists.

Keywords

Cosmic Microwave Background Plate Tectonic Gravitational Constant Scientific Revolution Continental Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. E. Appleton, Geomagnetism and the ionosphere. Scientific Papers Presented to Max Born, (Oliver and Boyd, Edinburgh, 1953), pp. 1–12Google Scholar
  2. J.M. Barnothy, B.M. Tinsley, A critique of Hoyle and Narlikar’s new cosmology. Astrophys. J. 182, 343–349 (1973)CrossRefGoogle Scholar
  3. V.V. Beloussov, Against the hypothesis of ocean-floor spreading. Tectonophysics 9, 489–511 (1970)CrossRefGoogle Scholar
  4. P.L. Bender et al., The lunar laser ranging experiment. Science 182, 229–238 (1973)CrossRefGoogle Scholar
  5. R.H. Beyler, Targeting the organism: the scientific and cultural context of Pascual Jordan’s quantum biology, 1932–1947. Isis 87, 248–273 (1996)Google Scholar
  6. R.H. Beyler, Ernst Pascual Jordan: freedom vs. materialism, in Eminent Lives in Twentieth-CenturyScience & Religion, ed. by N.A. Rupke (Peter Lang, Frankfurt am Main, 2009), pp. 233–252Google Scholar
  7. R.H. Beyler, From Positivism to Organicism: Pascual Jordan’s Interpretations of Modern Physics in Cultural Context. Ph.D. thesis, Harvard University, 1994Google Scholar
  8. G.M. Blake, The rate of change of G. Mon. Not. R. Astron. Soc. 178, 41P–43P (1977)CrossRefGoogle Scholar
  9. G.M. Blake, The Large Numbers Hypothesis and the rotation of the Earth. Mon. Not. R. Astron. Soc. 185, 399–407 (1978)CrossRefGoogle Scholar
  10. H. Bondi, T. Gold, On the damping of the free nutation of the Earth. Mon. Not. R. Astron. Soc. 115, 41–46 (1955)CrossRefGoogle Scholar
  11. V.S. Brezhnev, D.D. Ivanenko, B.N. Frolov, A possible interpretation of Dirac’s hypothesis on the decrease in the gravitational constant based on a new solution of Einstein’s equations. Sov. Phys. J. 9(6), 67–68 (1966)CrossRefGoogle Scholar
  12. S.G. Brush, A history of modern planetary science, in The Age of the Earth and the Evolution of the Elements from Lyell to Patterson, vol. 2, (Cambridge University Press, Cambridge, 1996b)Google Scholar
  13. V. Canuto, S.-H. Hsieh, The 3 K blackbody radiation, Dirac’s large numbers hypothesis, and scale-covariant cosmology. Astrophys. J. 224, 302–307 (1978)CrossRefGoogle Scholar
  14. V. Canuto, S.-H. Hsieh, Cosmological variation of G and the solar luminosity. Astrophys. J. 237, 613–615 (1980a)CrossRefGoogle Scholar
  15. V. Canuto, S.-H. Hsieh, Primordial nucleosynthesis and Dirac’s Large Numbers Hypothesis. Astrophys. J. 239, L91 (1980b)CrossRefGoogle Scholar
  16. V. Canuto, J. Lodenquai, Dirac cosmology. Astrophys. J. 211, 342–356 (1977)CrossRefGoogle Scholar
  17. V. Canuto, P.J. Adams, E. Tsiang, Crystal structure and Dirac’s large numbers hypothesis. Nature 261, 438 (1976)CrossRefGoogle Scholar
  18. V. Canuto, P.J. Adams, S.-H. Hsieh, E. Tsiang, Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. D 16, 1643–1663 (1977)MathSciNetCrossRefGoogle Scholar
  19. S.W. Carey, A tectonic approach to continental drift, in Continental Drift: A Symposium, ed. by S.W. Carey (University of Tasmania, Hobart, TAS, 1958), pp. 177–355Google Scholar
  20. S.W. Carey, Palæomagnetic evidence relevant to a change in the Earth’s radius. Nature 190, 36 (1961)CrossRefGoogle Scholar
  21. S.W. Carey, The Expanding Earth (Elsevier, Amsterdam, 1976)Google Scholar
  22. S.W. Carey, Earth expansion and the null universe, in The Expanding Earth, A Symposium, ed. by S. Warren Carey (University of Tasmania, Hobart, TAS, 1983), pp. 367–374Google Scholar
  23. S.W. Carey, Theories of the Earth and Universe: A History of Dogma in the Earth Sciences (Stanford University Press, Stanford, CA, 1988)Google Scholar
  24. S.W. Carey, A philosophy of the Earth and the universe. Papers and Proceedings of the Royal Society of Tasmania, vol. 112 (1978), http://eprints.utas.edu.au/14186/1/1978_Carey_Philosophy.pdf
  25. B. Carter, Large number coincidences and the anthropic principle in cosmology, in Confrontations of Cosmological Theories with Observational Data, ed. by M.S. Longair (Reidel, Dordrecht, 1973), pp. 291–298Google Scholar
  26. T.L. Chow, The variability of the gravitational constant. Lettere al Nuovo Cimento 31, 119–120 (1981)CrossRefGoogle Scholar
  27. I.B. Cohen, Revolution in Science (Harvard University Press, Cambridge, MA, 1985)Google Scholar
  28. A.V. Cox, R.R. Doell, Palæomagnetic evidence to a change in the Earth’s radius. Nature 189, 45–47 (1961)CrossRefGoogle Scholar
  29. J. Croll, Discussions on Climate and Cosmology (A. and C. Black, Edinburgh, 1885)Google Scholar
  30. J. Darius, Rethinking the universe. New Scientist 53(2 March), 482–483 (1972)Google Scholar
  31. B. Davis, A suggestive relation between the gravitational constant and the constants of the ether. Science 19, 928–929 (1904)CrossRefGoogle Scholar
  32. D.S. Dearborn, D.N. Schramm, Limits on variation of G from clusters of galaxies. Nature 247, 441–443 (1974)CrossRefGoogle Scholar
  33. R. Dearnley, Orogenic fold-belts, convection and expansion of the Earth. Nature 206, 1284–1290 (1965)CrossRefzbMATHGoogle Scholar
  34. R.H. Dicke, The many faces of Mach, in Gravitation and Relativity, ed. by H.-Y. Chiu, W.F. Hoffmann (W. A. Benjamin, New York, 1964a), pp. 121–141Google Scholar
  35. R.H. Dicke, Dirac’s cosmology and Mach’s principle. Nature 192, 440–441 (1961a). Reprinted in J. Leslie (ed.), Physical Cosmology and Philosophy (Macmillan, New York, 1960), pp. 121–124Google Scholar
  36. R.H. Dicke, P. James, E. Peebles, P.G. Roll, D.T. Wilkinson, Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965)CrossRefGoogle Scholar
  37. R.S. Dietz, Passive continents, spreading sea floors and continental rises: a reply. Am. J. Sci. 265, 231–237 (1967)CrossRefGoogle Scholar
  38. P.A.M. Dirac, The relation between mathematics and physics. Proc. R. Soc. (Edinburgh) 59, 122–129 (1939)zbMATHGoogle Scholar
  39. P.A.M. Dirac, Long range forces and broken symmetries. Proc. R. Soc. A 333, 403–418 (1973b)MathSciNetCrossRefGoogle Scholar
  40. P.A.M. Dirac, New ideas of space and time. Naturwissenschaften 60, 529–531 (1973c)CrossRefGoogle Scholar
  41. P.A.M. Dirac, Evolutionary cosmology. Pontifica Academia Scientiarum, Commentarii 11(46), 1–15 (1973d)Google Scholar
  42. P.A.M. Dirac, Cosmological models and the Large Number hypothesis. Proc. R. Soc. A 338, 439–446 (1974)CrossRefGoogle Scholar
  43. P.A.M. Dirac, The Large Numbers Hypothesis and its consequences, in Theories and Experiments in High-Energy Physics, ed. by A. Perlmutter, S.M. Widmayer (Plenum Press, New York, 1975), pp. 443–456CrossRefGoogle Scholar
  44. P.A.M. Dirac, Consequences of varying G, in Current Trends in the Theory of Fields, ed. by J.E. Lannutti, P.K. Williams (AIP Conference Proceedings, New York, 1978a), pp. 169–174Google Scholar
  45. P.A.M. Dirac, Cosmology and the gravitational constant, in Directions in Physics, ed. by P.A.M. Dirac (Wiley, New York, 1978b), pp. 71–92Google Scholar
  46. P.A.M. Dirac, The Large Numbers Hypothesis and the cosmological variation of the gravitational constant, in On the Measurement of Cosmological Variations of the Gravitational Constant, ed. by L. Halpern (University of Florida Press, Miami, 1978c), pp. 3–20Google Scholar
  47. P.A.M. Dirac, The Large Numbers Hypothesis and the Einstein theory of gravitation. Proc. R. Soc. A 365, 19–30 (1979)MathSciNetCrossRefGoogle Scholar
  48. P.A.M. Dirac, The early years of relativity, in Albert Einstein, Historical and Cultural Perspectives, ed. by G. Holton, Y. Elkana (Princeton University Press, Princeton, 1982), pp. 79–90Google Scholar
  49. R.E. Doel, Solar System Astronomy in America: Communities, Patronage, and Interdisciplinary Research, 1920–1960 (Cambridge University Press, Cambridge, 1996)Google Scholar
  50. S. Ducheyne, Testing universal gravitation in the laboratory, or the significance of research of the mean density of the Earth and big G, 1798–1898: changing pursuits and long-term methodological-experimental continuity. Arch. Hist. Exact Sci. 65, 181–227 (2011)CrossRefGoogle Scholar
  51. A.C. Economos, The largest land mammal. J. Theor. Biol. 89, 211–215 (1981)CrossRefGoogle Scholar
  52. L. Egyed, Determination of changes in the dimension of the Earth from palæogeographical data. Nature 173, 534 (1956a)CrossRefGoogle Scholar
  53. L. Egyed, Vom Aufbau der Erde, inDie Erde, ed. by A. Tasnádi-Kubacska (Urania-Verlag, Leipzig, 1965), pp. 48–103Google Scholar
  54. G. Ellis, Editorial note. Gen. Relativ. Gravit. 41, 2179–2189 (2009)CrossRefzbMATHGoogle Scholar
  55. D. Ezer, A.G.W. Cameron, Solar evolution with varying G. Can. J. Phys. 44, 593–615 (1966)CrossRefGoogle Scholar
  56. R.W. Fairbridge, Endospheres and interzonal coupling. Ann. N. Y. Acad. Sci. 140, 133–148 (1966)CrossRefGoogle Scholar
  57. G. Feulner, The faint young Sun problem. Rev. Geophys. 50, RG2006 (2012)Google Scholar
  58. H.R. Frankel, The Continental Drift Controversy: Introduction of Seafloor Spreading, (Cambridge University Press, Cambridge, 2012c)Google Scholar
  59. G.T. Gillies, The Newtonian Gravitational Constant: An Index of Measurements. Report BIPM-83/1. Sèvres, (Bureau International des Poids et Mesures, France, 1983). http://www.bipm.org/utils/common/pdf/rapportBIPM/1983/01.pdf
  60. J.H. Gittus, Dirac’s large numbers hypothesis and the structure of rocks. Proc. R Soc. A 343, 155–158 (1975)CrossRefGoogle Scholar
  61. H. Glashoff, Endogene Dynamik der Erde und die Diracsche Hypothese (Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur in Mainz, 1966), p. 34Google Scholar
  62. J.N. Goldberg, US Air Force support of general relativity, 1956–1972, in Studies in the History of General Relativity, ed. by J. Eisenstaedt, A.J. Kox (Birkhäuser, Boston, 1992), pp. 89–102Google Scholar
  63. J.S. Grimes, Outlines of Geonomy: A Treatise on the Physical Laws of the Earth and the Creation of the Continents (Phillips, Sampson & Company, Boston, 1858)Google Scholar
  64. A.E. Haas, An attempt to a purely theoretical derivation of the mass of the universe. Phys. Rev. 49, 411–412 (1936)CrossRefGoogle Scholar
  65. A. Hallam, The unlikelihood of an expanding Earth. Geol. Mag. 121, 653–655 (1984)CrossRefGoogle Scholar
  66. J.K.E. Halm, An astronomical aspect of the evolution of the Earth. J. Astron. Soc. South Africa 4, 1–28 (1935a)Google Scholar
  67. E.R. Harrison, Cosmic numbers. Nature 197, 1257–1259 (1963)CrossRefGoogle Scholar
  68. V. Herzen, P. Richard, Surface heat flow and some implications for the mantle, in The Earth’s Mantle, ed. by T.F. Gaskell (Academic Press, London, 1967), pp. 197–231Google Scholar
  69. O.C. Hilgenberg, Paläopollagen der Erde. N. Jb. Geol. Paläont. 116, 1–56 (1962)Google Scholar
  70. H. Hönl, H. Dehnen, Erlaubt die 3° Kelvin-Strahlung Rückschlüsse auf eine konstante oder veränderliche Gravitationszahl? Z. Astrophys. 68, 181–189 (1968)Google Scholar
  71. F. Hoyle, The history of the Earth. Q. J. R. Astron. Soc. 13, 328–345 (1972)Google Scholar
  72. F. Hoyle, Home is Where the Wind Blows: Chapters from a Cosmologist’s Life (University Science Books, Mill Valley, CA, 1994)Google Scholar
  73. F. Hoyle, R.A. Lyttleton, The effect of interstellar matter on climatic variation. Proc. Camb. Philos. Soc. 35, 405–415 (1939)CrossRefGoogle Scholar
  74. F. Hoyle, J.V. Narlikar, A new theory of gravitation. Proc. R. Soc. A 282, 191–207 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  75. F. Hoyle, J.V. Narlikar, On the nature of mass. Nature 233, 41–44 (1971)CrossRefGoogle Scholar
  76. F. Hoyle, J.V. Narlikar, Cosmological models in a conformally invariant gravitational theory, II. Mon. Not. R. Astron. Soc. 155, 323–335 (1972)CrossRefGoogle Scholar
  77. S.W. Hurrell, Dinosaurs and the Expanding Earth (2011), OneOffPublishing.com (E-book)Google Scholar
  78. W. Israel, Imploding stars, shifting continents, and the inconstancy of matter. Found. Phys. 26, 595–616 (1996)MathSciNetCrossRefGoogle Scholar
  79. H. Jeffreys, The Earth: Its Origin, History and Physical Constitution (Cambridge University Press, Cambridge, 1924)Google Scholar
  80. P. Jordan, Formation of the stars and development of the universe. Nature 164, 637–640 (1949)CrossRefzbMATHGoogle Scholar
  81. P. Jordan, Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157, 112–121 (1959)CrossRefGoogle Scholar
  82. P. Jordan, On the possibility of avoiding Ramsey’s hypothesis in formulating a theory of Earth expansion, in The Application of Modern Physics to the Earth and Planetary Interiors, ed. by S.K. Runcorn (Wiley Interscience, London, 1969a), pp. 55–62Google Scholar
  83. V.E. Khain, Mobilism and plate tectonics in the USSR. Tectonophysics 199, 137–148 (1991)CrossRefGoogle Scholar
  84. V.E. Khain, A.G. Ryabukhin, Russian geology and the plate tectonics revolution, in The Earth Inside and Out: Some Major Contributions to Geology in the Twentieth Century, ed. by D.R. Oldroyd (The Geological Society of London, London, 2002), pp. 185–198Google Scholar
  85. L.C. King, Wandering Continents and Spreading Sea Floors on an Expanding Earth (Wiley, New York, 1983)Google Scholar
  86. G.J. Kirby, The amateur scientist and the rotation of the Earth. J. Naval Sci. 1, 242–247 (1971)Google Scholar
  87. H.B. Klepp, Terrestrial, interplanetary and universal expansion. Nature 201, 693 (1964)CrossRefGoogle Scholar
  88. H. Kragh, Dirac: A Scientific Biography (Cambridge University Press, Cambridge, 1990)Google Scholar
  89. H. Kragh, Cosmology and Controversy: The Historical Development of Two Theories of the Universe (Princeton University Press, Princeton, 1996)Google Scholar
  90. H. Kragh, Higher Speculations: Grand Theories and Failed Revolutions in Physics and Cosmology (Oxford University Press, Oxford, 2011)Google Scholar
  91. H. Kragh, The science of the universe: cosmology and science education, in International Handbook of Research in History, Philosophy and Science Teaching, ed. by M.R. Matthews, vol. 1 (Springer, Dordrecht, 2014b), pp. 643–668Google Scholar
  92. B. Kuchowicz, Diminishing gravitation—a hitherto underrated factor in the evolution of organic life. Experientia 27, 616 (1971)CrossRefGoogle Scholar
  93. W. Kundt, Jordan’s ‘excursion’ into geophysics, in Pascual Jordan (1902–1980). Mainzer Symposium zum 100. Geburtstag, (Max Planck Institute for the History of Science, Berlin, 2007), pp. 123–132, Preprint no. 2007. http://www.mpiwg-berlin.mpg.de/en/resources/preprints.html
  94. D. La, P.J. Steinhardt, Extended inflationary cosmology. Phys. Rev. Lett. 62, 276–378 (1989)CrossRefGoogle Scholar
  95. R. Laudan, The recent revolution in geology and Kuhn’s theory of scientific change, in Paradigms and Revolutions: Appraisals and Applications of Thomas Kuhn’s Philosophy of Science, ed. by G. Gutting (University of Notre Dame Press, Notre Dame, 1980), pp. 284–297Google Scholar
  96. R. Laudan, Redefinitions of a discipline: histories of geology and geological history, in Functions and Uses of Disciplinary Histories, ed. by L. Graham, W. Lepenies, P. Weingart (Reidel, Dordrecht, 1983), pp. 79–104CrossRefGoogle Scholar
  97. H.E. Le Grand, Drifting Continents and Shifting Theories (Cambridge University Press, Cambridge, 1988)Google Scholar
  98. B.M. Lewis, Variable G: a solution to the missing mass problem. Nature 261, 302–304 (1976)CrossRefGoogle Scholar
  99. P.D. Lowman, Faulting continental drift. The Sciences 23, 34–39 (1983)CrossRefGoogle Scholar
  100. R.A. Lyttleton, The structures of the terrestrial planets. Adv. Astron. Astrophys. 7, 83–147 (1970)CrossRefGoogle Scholar
  101. R.A. Lyttleton, Relation of a contracting Earth to the apparent accelerations of the Sun and Moon. The Moon 16, 41–58 (1976)CrossRefGoogle Scholar
  102. R.A. Lyttleton, The Earth and its Mountains (Wiley, New York, 1982)Google Scholar
  103. R.A. Lyttleton, H. Bondi, How plate tectonics may appear to a physicist. J. Br. Astron. Assoc. 102, 194–195 (1992)Google Scholar
  104. R.A. Lyttleton, J.P. Fitch, Cosmological change of G and the structure of the Earth. Mon. Not. R. Astron. Soc. 180, 471–477 (1977)CrossRefGoogle Scholar
  105. J. MacDougall et al., A comparison of terrestrial and universal expansion. Nature 199, 1080 (1963)CrossRefGoogle Scholar
  106. P. Machamer, M. Pera, A. Baltas (eds.), Scientific Controversies: Philosophical and Historical Perspectives (Oxford University Press, New York, 2000)Google Scholar
  107. A. Maeder, Four basic solar and stellar tests of cosmologies with variable past G and macroscopic masses. Astron. Astrophys. 56, 359–367 (1977)Google Scholar
  108. V.N. Mansfield, Dirac cosmologies and the microwave background. Astrophys. J. 210, L137–L138 (1976)MathSciNetCrossRefGoogle Scholar
  109. U.B. Marvin, Continental Drift: The Evolution of a Concept (Smithsonian Institution Press, Washington, DC, 1973)Google Scholar
  110. W. Marx, L. Bornmann, The emergence of plate tectonics and the Kuhnian model of paradigm shift. Scientometrics 94, 595–614 (2013)CrossRefGoogle Scholar
  111. W.H. McCrea, Continual creation. Mon. Not. R. Astron. Soc. 128, 335–343 (1964)CrossRefGoogle Scholar
  112. M.W. McElhinny, Limits to Earth expansion. Explor. Geophys. 9, 149–152 (1978)CrossRefGoogle Scholar
  113. M.W. McElhinny, S.R. Taylor, D.J. Stevenson, Limits to the expansion of Earth, Moon, Mars and Mercury and to changes in the gravitational constant. Nature 271, 316–321 (1978)CrossRefGoogle Scholar
  114. D.P. McKenzie, Plate tectonics and its relationship to the evolution of ideas in the geological sciences. Daedalus 106, 97–124 (1977)Google Scholar
  115. P.M. Muller, Determination of the cosmological rate of change of G and tidal accelerations of Earth and Moon from ancient and modern astronomical data, in On the Measurement of Cosmological Variations of the Gravitational Constant, ed. by L. Halpern (University of Florida Press, Miami, 1978), pp. 91–116Google Scholar
  116. J. Müller, L. Biskukep, Variations of the gravitational constant from lunar laser ranging data. Classical Quantum Gravity 24, 4533–4538 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  117. J.V. Narlikar, A.K. Kembhavi, Non-standard cosmologies, in Handbook of Astronomy, Astrophysics and Geophysics, eds. by V.M. Canuto, B.G. Elmegreen, vol. II: Galaxies and Cosmology (Gordon and Breach, New York, 1988), pp. 301–498Google Scholar
  118. J. North, The Measure of the Universe: A History of Modern Cosmology (Oxford University Press, Oxford, 1965)Google Scholar
  119. R. Nunan, Expanding Earth theories, in Sciences of the Earth: An Encyclopedia of Events, People, and Phenomena, ed. by G.A. Good, vol. 2 (Garland Publishing, New York, 1998), pp. 243–250Google Scholar
  120. G.G. Nyambuya, On the expanding Earth and shrinking Moon. Int. J. Astron. Astrophys. 4, 227–243 (2014)CrossRefGoogle Scholar
  121. E.J. Öpik, Solar variability and palaeoclimatic changes. Ir. Astron. J. 5, 97–109 (1958)Google Scholar
  122. H.G. Owen, Continental displacement and expansion of the Earth during the Mesozoic and Cenozoic. Philos. Trans. R. Soc. A 281, 223–291 (1976)CrossRefGoogle Scholar
  123. H. G. Owen, The Earth is expanding and we don’t know why. New Scientist 65 (22 November): 27–29 (1984)Google Scholar
  124. H.G. Owen, Earth expansion: some mistakes, what happened the Palaeozoic and the way ahead, in The Earth Expansion Evidence: A Challenge for Geology, Geophysics and Astronomy, ed. by G. Scalera, E. Boschi, S. Cwojdzinski (Istituto Nazionale di Geofisica e Vulcanologia, Rome, 2012), pp. 77–89Google Scholar
  125. G. Pannella, Paleontological evidence on the Earth’s rotational history since early Precambrian. Astrophys. Space Sci. 16, 212–237 (1972)CrossRefGoogle Scholar
  126. P.J.E. Peebles, D.T. Wilkinson, The primeval fireball. Sci. Am. 216(June), 28–37 (1967)CrossRefGoogle Scholar
  127. P.J.E. Peebles, L.A. Page, R.B. Partridge, Finding the Big Bang (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  128. S.K. Runcorn, Changes in the Earth’s moment of inertia. Nature 204, 823–825 (1964)CrossRefGoogle Scholar
  129. S.K. Runcorn, Mechanism of plate tectonics: mantle convection currents, plumes, gravity sliding or expansion? Tectonophysics 63, 297–307 (1980)CrossRefGoogle Scholar
  130. G. Scalera, K.-H. Jacob (eds.), Why Expanding Earth? A Book in Honour of Ott Christoph Hilgenberg (Istituto Nazionale di Geofisica e Vulcanologia, Rome, 2003)Google Scholar
  131. G. Scalera, E. Boschi, S. Cwojdzinski (eds.), The Earth Expansion Evidence: A Challenge for Geology, Geophysics and Astronomy (Istituto Nazionale di Geofisica e Vulcanologia, Rome, 2012)Google Scholar
  132. A.E. Scheidegger, Principles of Geodynamics (Springer, Berlin, 1958)CrossRefzbMATHGoogle Scholar
  133. A.E. Scheidegger, Recent advances in geodynamics. Earth Sci. Rev. 1, 133–153 (1966)CrossRefGoogle Scholar
  134. A.E. Scheidegger, Foundations of Geophysics (Elsevier, Amsterdam, 1976)Google Scholar
  135. P.W. Schmidt, B.J.J. Embleton, A geotectonic paradox: has the Earth expanded? J. Geophys. 49, 20–25 (1981)Google Scholar
  136. W. Schröder, H.-J. Treder, Geophysics and cosmology—a historical review. Acta Geodaetica et Geophysica Hungarica 42, 119–137 (2007)CrossRefGoogle Scholar
  137. I.I. Shapiro et al., Gravitational constant: Experimental bound on its time variation. Phys. Rev. Lett. 26, 27–30 (1971)CrossRefGoogle Scholar
  138. W.-B. Shen et al., The expanding Earth at present: Evidence from temporal gravity field and space-geodetic data. Ann. Geophys. 54, 436–453 (2011)Google Scholar
  139. P.J. Smith, Evidence for Earth expansion? Nature 268, 200 (1977)CrossRefGoogle Scholar
  140. P.J. Smith, The end of the expanding Earth hypothesis? Nature 271, 301 (1978)CrossRefGoogle Scholar
  141. G. Steigman, Particle creation and Dirac’s large numbers hypothesis. Nature 261, 479–480 (1976)CrossRefGoogle Scholar
  142. G. Steigman, A crucial test of the Dirac cosmologies. Astrophys. J. 221, 407–411 (1978)CrossRefGoogle Scholar
  143. J. Steiner, An expanding Earth on the basis of sea-floor spreading and subduction rates. Geology 5, 313–318 (1977)CrossRefGoogle Scholar
  144. A.D. Stewart, Palaeogravity, in Palaeogeophysics, ed. by S. Keith Runcorn (Academic Press, London, 1970), pp. 413–434Google Scholar
  145. A.D. Stewart, Quantitative limits to palaeogravity. J. Geol. Soc. Lond. 133, 281–291 (1977)CrossRefGoogle Scholar
  146. A.D. Stewart, Limits to palaeogravity since the late Precambrium. Nature 271, 153–155 (1978)CrossRefGoogle Scholar
  147. A.D. Stewart, Quantitative limits to the palaeoradius of the Earth, in The Expanding Earth, a Symposium, ed. by S. Warren Carey (University of Tasmania, Hobart, TAS, 1983), pp. 305–319Google Scholar
  148. P. Sudiro, The Earth expansion theory and its transition from scientific hypothesis to pseudoscientific belief. Hist. Geo- and Space Sci. 5, 135–148 (2014)CrossRefGoogle Scholar
  149. K.M. Towe, Crystal structures, the Earth and Dirac’s large numbers hypothesis. Nature 257, 115–116 (1975)CrossRefGoogle Scholar
  150. E. Tryon, Is the universe a quantum fluctuation? Nature 246, 396–397 (1973)CrossRefGoogle Scholar
  151. E. Tryon, Cosmology and the expanding Earth hypothesis, in The Expanding Earth, a Symposium, ed. by S. Warren Carey (University of Tasmania, Hobart, TAS, 1983), pp. 349–358Google Scholar
  152. S.I. Van Andel, J. Hospers, A statistical analysis of ancient Earth radii calculated from Palaeomagnetic data. Tectonophysics 6, 491–496 (1968)CrossRefGoogle Scholar
  153. T.C. Van Flandern, A determination of the rate of change of G. Bull. Am. Astron. Soc. 6, 206 (1974)Google Scholar
  154. T.C. Van Flandern, A determination of the rate of change of G. Mon. Not. R. Astron. Soc. 170, 333–342 (1975a)CrossRefGoogle Scholar
  155. T.C. Van Flandern, Recent evidence for variations in the value of G. Ann. N. Y. Acad. Sci. 262, 494–495 (1975b)CrossRefGoogle Scholar
  156. T.C. Van Flandern, Is gravity getting weaker? Sci. Am. 234(February), 44–52 (1976)CrossRefGoogle Scholar
  157. T.C. Van Flandern, Status of the occultation determination of G-dot, in On the Measurement of Cosmological Variations of the Gravitational Constant, ed. by L. Halpern (University of Florida Press, Miami, 1978), pp. 21–28Google Scholar
  158. T.C. Van Flandern, Is the gravitational constant changing? Astrophys. J. 248, 813–816 (1981)CrossRefGoogle Scholar
  159. T.C. Van Flandern, Dark Matter, Missing Planets & New Comets: Paradoxes Resolved, Origins Illuminated (North Atlantic Books, Berkeley, 1993)Google Scholar
  160. D. Van Hilten, The ancient radius of the Earth. Geophys. J. Int. 9, 279–281 (1965)CrossRefGoogle Scholar
  161. P.S. Wesson, The implications for geophysics of modern cosmologies in which G is variable. Q. J. R. Astron. Soc. 14, 9–64 (1973)Google Scholar
  162. P.S. Wesson, Cosmology and Geophysics (Adam Hilger, Bristol, 1978)Google Scholar
  163. P.S. Wesson, Gravity, Particles, and Astrophysics (Reidel, Dordrecht, 1980)CrossRefGoogle Scholar
  164. P.S. Wesson, R.E. Goodson, New pathways in gravitational research. Observatory 101, 105–108 (1981)Google Scholar
  165. J.G. Williams, S.G. Turyshev, D.H. Boggs, Progress in lunar ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004)CrossRefGoogle Scholar
  166. J.T. Wilson, Static or mobile earth: the current scientific revolution. Proc. Am. Philos. Soc. 112, 309–320 (1968)Google Scholar
  167. J.T. Wilson, Overdue: another scientific revolution. Nature 265, 196–197 (1977)CrossRefGoogle Scholar
  168. R.M. Wood, The Dark Side of the Earth (Allen & Unwin, London, 1985)Google Scholar
  169. R.M. Wood, Is the Earth getting bigger? New Scientist 81 (8 February), 387 (1979)Google Scholar
  170. X. Wu et al., Accuracy of the International Terrestrial Reference Frame origin and Earth expansion. Geophys. Res. Lett. 38, L13304 (2011)Google Scholar
  171. S. Yabushita, The Large-Number Hypothesis and the Earth’s expansion. The Moon and the Planets 26, 135–141 (1982)CrossRefGoogle Scholar
  172. S. Yabushita, The Large-Number Hypothesis and the Earth’s expansion, II. Earth Moon Planet 31, 43–47 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Helge Kragh
    • 1
  1. 1.Niels Bohr ArchiveNiels Bohr InstituteCopenhagenDenmark

Personalised recommendations