Advertisement

Varying Gravity

  • Helge Kragh
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 54)

Abstract

The unorthodox idea that the gravitational constant G varies slowly in time arose in the late 1930s in the context of a cosmological theory proposed by the English physicist Paul Dirac. The idea was received coolly, not only because it led to a much too small age of the universe but also because it contradicted the general theory of relativity and, on the top of that, was thought to be untestable. However, Dirac’s idea was taken up and further developed by Pascual Jordan in Germany and after World War II it slowly began to attract attention among physicists and astronomers. In 1948 the hypothesis of varying gravity made its first connection to the earth sciences in the form of an attempt, made by Edward Teller, to test the hypothesis by means of a paleoclimatic argument. The test was inconclusive and was initially ignored by the earth scientists.

Keywords

Cosmological Model Gravitational Constant Beta Decay Gravitation Theory Hubble Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. L.T. Aldrich et al., (eds.), Cosmological and Geological Implications of Isotope Ratio Variations. Nuclear Science Series, Report 23. (National Research Council, Washington, DC, 1958)Google Scholar
  2. E. Amaldi, The Adventurous Life of Friedrich Georg Houtermans, Physicist (1903–1996) (Springer, Berlin, 2012)CrossRefGoogle Scholar
  3. F.L. Arnot, Cosmological theory. Nature 141, 1142–1143 (1938)CrossRefzbMATHGoogle Scholar
  4. F.L. Arnot, Time and the Universe (Australasian Medical Publishing, Sydney, 1941)zbMATHGoogle Scholar
  5. V. Bargmann, Relativity. Rev. Mod. Phys. 29, 161–174 (1957)MathSciNetCrossRefGoogle Scholar
  6. J.D. Barrow, From Alpha to Omega: The Constants of Nature (Jonathan Cape, London, 2002)Google Scholar
  7. J.D. Barrow, F.J. Tipler, The Anthropic Cosmological Principle (Clarendon Press, Oxford, 1986)Google Scholar
  8. W.D. Beiglböck, Pascual Jordan: Schriftenverzeichnis. in Pascual Jordan (1902–1980). Mainzer Symposium zum 100. Geburtstag, (Max Planck Institute for the History of Science, Berlin, 2007), pp. 47–68, Preprint no. 329. http://www.mpiwg-berlin.mpg.de/en/resources/preprints.html
  9. P.G. Bergmann, Unified field theory with fifteen field variables. Ann. Math. 49, 255–264 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  10. P.G. Bergmann, Summary of the Chapel Hill conference. Rev. Mod. Phys. 29, 352–354 (1957)MathSciNetCrossRefGoogle Scholar
  11. P.M.S. Blackett, Instability of the mesotron and the gravitational constant. Nature 144, 30 (1939)zbMATHGoogle Scholar
  12. P.M.S. Blackett, Cosmic rays: recent developments. Proc. Phys. Soc. 53, 203–213 (1941)CrossRefGoogle Scholar
  13. H. Bondi, Cosmology (Cambridge University Press, Cambridge, 1952)zbMATHGoogle Scholar
  14. C.V. Boys, On the Newtonian constant of gravitation. Nature 50, 330–334 (1894)CrossRefGoogle Scholar
  15. C.H. Brans, Gravity and the tenacious scalar field, in On Einstein’s Path: Essays in Honor of Engelbert Schucking, ed. by A. Harvey (Springer, New York, 1999), pp. 121–138CrossRefGoogle Scholar
  16. C.H. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  17. C.H. Brans, Jordan-Brans-Dicke theory. Scholarpedia 9 (4), 31358 (2014). http://www.scholarpedia.org/article/Jordan-Brans-Dicke_Theory
  18. C.H. Brans, Varying Newton’s constant: a personal history of scalar-tensor theories, in Einstein Online 04, 1002 (2010). http://www.einstein-online.info/spotlights/scalar-tensor/?searchterm=Brans
  19. C.H. Brans, Mach’s Principle and a Varying Gravitational Constant. Unpublished Ph.D. thesis, Princeton University, 1961, http://loyno.edu/~brans/theses/PHD-thesis-brans-1961.pdf
  20. D.R. Brill, Review of Jordan’s extended theory of gravitation, in Evidence for Gravitational Theories, ed. by C. Møller (Academic Press, New York, 1962), pp. 50–68Google Scholar
  21. S.G. Brush, Is the Earth too old? The impact of geochronology on cosmology, 1929–1952, in The Age of the Earth: From 4004 BC to AD 2002, ed. by C.L. Lewis, S.J. Knell (Geological Society, London, 2001), pp. 157–175Google Scholar
  22. P. Buckley, F. David Peat, A Question of Physics: Conversations in Physics and Biology (Routledge & Kegan Paul, London, 1979)Google Scholar
  23. K.E. Bullen, Compressibility-pressure hypothesis and the Earth’s inner core. Mon. Not. R. Astron. Soc. 5, 355–368 (1949)Google Scholar
  24. S.W. Carey, Theories of the Earth and Universe: A History of Dogma in the Earth Sciences (Stanford University Press, Stanford, CA, 1988)Google Scholar
  25. B. Carter, The anthropic principle: self-selection as an adjunct to natural selection, in Cosmic Perspectives, ed. by S.K. Biswas, D.C.V. Mallik, C.V. Vishveshwara (Cambridge University Press, Cambridge, 1989), pp. 185–206Google Scholar
  26. S. Chandrasekhar, The cosmological constants. Nature 139, 757–758 (1937)CrossRefGoogle Scholar
  27. C.-W. Chin, R. Stothers, Solar test of Dirac’s large numbers hypothesis. Nature 254, 206–207 (1975)CrossRefGoogle Scholar
  28. M.A. Cook, A.J. Eardley, Energy requirement in terrestrial expansion. J. Geophys. Res. 66, 3907–3912 (1961)CrossRefGoogle Scholar
  29. A.V. Cox, Plate Tectonics and Geomagnetic Reversals (Freeman, San Francisco, 1973)Google Scholar
  30. V. De Sabatta, P. Rizzati, A relation between the periodicity of earthquakes and the variation of gravitational constant. Lettere al Nuovo Cimento 20, 117–120 (1977)CrossRefGoogle Scholar
  31. R. Dehm, Geologisches Erdalter und astrophysikalisches Weltalter. Naturwissenschaften 36, 166–171 (1949)CrossRefGoogle Scholar
  32. H. Dehnen, H. Hönl, Informationen über das Universum aus antipodisch beobachteten Radioquellen. Die Naturwissenschaften 55, 413–415 (1968)CrossRefGoogle Scholar
  33. H. Dehnen, H. Hönl, Astrophysical consequences of Dirac’s hypothesis of a variable gravitational number. Astrophys. J. 155, L35–L42 (1969)CrossRefGoogle Scholar
  34. C.M. DeWitt, B. DeWitt (eds.), Relativity, Groups and Topology (Blackie and Son, London, 1964)zbMATHGoogle Scholar
  35. C.M. DeWitt, D. Rickles (eds.), The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference. (Edition Open Access, Berlin, 2011). http://edition-open-access.de/sources/5/index.html
  36. R.H. Dicke, Principle of equivalence and the weak interactions. Rev. Mod. Phys. 29, 355–362 (1957a)MathSciNetCrossRefGoogle Scholar
  37. R.H. Dicke, Gravitation without a principle of equivalence. Rev. Mod. Phys. 29, 363–376 (1957b)MathSciNetCrossRefzbMATHGoogle Scholar
  38. R.H. Dicke, Gravitation—An enigma. Am. Sci. 47, 25–40 (1959a)Google Scholar
  39. R.H. Dicke, Dirac’s cosmology and the dating of meteorites. Nature 183, 170–171 (1959b)CrossRefGoogle Scholar
  40. R.H. Dicke, New research on old gravitation. Science 129, 621–624 (1959c)CrossRefGoogle Scholar
  41. R.H. Dicke, The nature of gravitation, in Science in Space, ed. by L.V. Berkner, H. Odishaw (McGraw-Hill, New York, 1961a), pp. 91–120Google Scholar
  42. R.H. Dicke, The Earth and cosmology. Science 138, 653–664 (1962a)CrossRefGoogle Scholar
  43. R.H. Dicke, Implications for cosmology of stellar and galactic evolution rates. Rev. Mod. Phys. 34, 110–122 (1962b)MathSciNetCrossRefGoogle Scholar
  44. R.H. Dicke, The many faces of Mach, in Gravitation and Relativity, ed. by H.-Y. Chiu, W.F. Hoffmann (W. A. Benjamin, New York, 1964a), pp. 121–141Google Scholar
  45. R.H. Dicke, The significance for the solar system of time-varying gravitation, in Gravitation and Relativity, ed. by H.-Y. Chiu, W.F. Hoffmann (W. A. Benjamin, New York, 1964b), pp. 142–174Google Scholar
  46. R.H. Dicke, Possible effects on the solar system of φ waves if they exist, in Gravitation and Relativity, ed. by H.-Y. Chiu, W.F. Hoffmann (W. A. Benjamin, New York, 1964c), pp. 241–257Google Scholar
  47. R.H. Dicke, The secular acceleration of the Earth’s rotation and cosmology, in The Earth-Moon System, ed. by B.G. Marsden, A.G.W. Cameron (Plenum Press, New York, 1966), pp. 98–164CrossRefGoogle Scholar
  48. R.H. Dicke, The experimental basis of Einstein’s theory, in The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference, eds. by C.M. DeWitt, D. Rickles, (Edition Open Access, Berlin, 2011), pp. 51–60. http://edition-open-access.de/sources/5/index.html
  49. P.A.M. Dirac, The cosmological constants. Nature 139, 323 (1937)CrossRefzbMATHGoogle Scholar
  50. P.A.M. Dirac, A new basis for cosmology. Proc. R. Soc. A 165, 199–208 (1938)CrossRefGoogle Scholar
  51. P.A.M. Dirac, The relation between mathematics and physics. Proc. R. Soc. (Edinburgh) 59, 122–129 (1939)zbMATHGoogle Scholar
  52. P.A.M. Dirac, The variability of the gravitational constant, in Cosmology, Fusion, and Other Matters: George Gamow Memorial Volume, ed. by F. Reines (Adam Hilger, London, 1972), pp. 56–59Google Scholar
  53. P.A.M. Dirac, Fundamental constants and their development in time, in The Physicist’s Conception of Nature, ed. by J. Mehra (Reidel, Dordrecht, 1973a), pp. 45–59CrossRefGoogle Scholar
  54. P.A.M. Dirac, Long range forces and broken symmetries. Proc. R. Soc. A 333, 403–418 (1973b)MathSciNetCrossRefGoogle Scholar
  55. P.A.M. Dirac, Cosmological models and the Large Number hypothesis. Proc. R. Soc. A 338, 439–446 (1974)CrossRefGoogle Scholar
  56. P.A.M. Dirac, The Large Numbers Hypothesis and the Einstein theory of gravitation. Proc. R. Soc. A 365, 19–30 (1979)MathSciNetCrossRefGoogle Scholar
  57. R.E. Doel, Solar System Astronomy in America: Communities, Patronage, and Interdisciplinary Research, 1920–1960 (Cambridge University Press, Cambridge, 1996)Google Scholar
  58. F. Dyson, Variation of constants, in Current Trends in the Theory of Fields, ed. by J.E. Lannutti, P.K. Williams (AIP Conference Proceedings, New York, 1978), pp. 163–168Google Scholar
  59. F. Dyson, The fundamental constants and their time variation, in Aspects of Quantum Theory, eds. by A. Salam, E. P. Wigner, (1972), pp. 213–236Google Scholar
  60. A.S. Eddington, The cosmological controversy. Sci. Prog. 34, 225–236 (1939)Google Scholar
  61. W.M. Elsasser, Sea-flooor spreading as thermal convection. J. Geophys. Res. 76, 1101–1112 (1971)CrossRefGoogle Scholar
  62. R.W. Fairbridge, Thoughts about an expanding globe, in Advancing Frontiers in Geology and Geophysics, ed. by A.P. Subramanian, S. Balakrishna (Indian Geophysical Union, Hyderabad, 1964), pp. 59–88Google Scholar
  63. J.R. Fleming, T. C. Chamberlin, climate change, and cosmogony. Stud. Hist. Philos. Mod. Phys. 31, 293–308 (2000)CrossRefGoogle Scholar
  64. H.R. Frankel, The continental drift controversy, in Introduction of Seafloor Spreading, vol. 3, (Cambridge University Press, Cambridge, 2012c)Google Scholar
  65. G. Gamow, Gravity: Classic and Modern Views (Heinemann, London, 1962)Google Scholar
  66. G. Gamow, Electricity, gravity and cosmology. Phys. Rev. Lett. 19, 759–761 (1967a)CrossRefGoogle Scholar
  67. G. Gamow, History of the universe. Science 158, 766–769 (1967b)CrossRefGoogle Scholar
  68. G. Gamow, Does gravity change with time? Proc. Natl. Acad. Sci. U.S.A. 57, 187–193 (1967c)CrossRefGoogle Scholar
  69. G. Gamow, E. Teller, On the origin of great nebulae. Phys. Rev. 55, 654–657 (1939)CrossRefzbMATHGoogle Scholar
  70. H. Gerstenkorn, Veränderungen der Erde-Monde-System durch Gezeitenreibung in der Vergangenheit bei zeitabhängiger Gravitationskonstante. Z. Astrophys. 42, 137–155 (1957)MathSciNetGoogle Scholar
  71. C. Gilbert, The general theory of relativity and Newton’s law of gravitation. Nature 179, 270 (1957)CrossRefzbMATHGoogle Scholar
  72. C. Gilbert, Dirac’s cosmology. Nature 192, 57 (1961)CrossRefGoogle Scholar
  73. G.T. Gillies, The Newtonian gravitational constant: recent measurements and related studies. Rep. Prog. Phys. 60, 151–225 (1997)CrossRefGoogle Scholar
  74. T. Gold, Instability of the Earth’s axis of rotation. Nature 175, 526–529 (1955)CrossRefGoogle Scholar
  75. J. Greenberg, The Problem of the Earth’s Shape from Newton to Clairaut (Cambridge University Press, Cambridge, 1995)zbMATHGoogle Scholar
  76. J.B.S. Haldane, A quantum theory of the origin of the solar system. Nature 155, 133–135 (1945a)CrossRefGoogle Scholar
  77. J.B.S. Haldane, A new theory of the past. Am. Sci. 33, 129–145 (1945b)Google Scholar
  78. A. Hallam, Re-evaluation of the palaeogeographic argument for an expanding Earth. Nature 232, 180–182 (1971)CrossRefGoogle Scholar
  79. B.C. Heezen, The rift in the ocean floor. Sci. Am. 203(October), 98–110 (1960)CrossRefGoogle Scholar
  80. A. Holmes, The Age of the Earth (Harper & Brothers, London, 1913)zbMATHGoogle Scholar
  81. A. Holmes, Radioactivity and Earth history. Geogr. J. 65, 528–532 (1925)CrossRefGoogle Scholar
  82. F.G. Houtermans, P. Jordan, Über die Annahme der zeitlichen Veränderlichkeit des β-Zerfalls und die Möglichkeiten ihrer experimentellen Prüfung. Z. Naturforsch. 1, 125–130 (1946)Google Scholar
  83. P. Jordan, Die Physik des 20 Jahrhhunderts (Vieweg, Braunschweig, 1936)Google Scholar
  84. P. Jordan, Die physikalischen Weltkonstanten. Die Naturwissenschaften 25, 513–517 (1937)CrossRefzbMATHGoogle Scholar
  85. P. Jordan, Zur empirischen Kosmologie. Die Naturwissenschaften 26, 417–421 (1938)CrossRefzbMATHGoogle Scholar
  86. P. Jordan, Bemerkungen zur Kosmologie. Ann. Phys. 32, 64–70 (1939)CrossRefGoogle Scholar
  87. P. Jordan, Über die Entstehung der Sterne. Physikalische Zeitschrift 45(183–190), 233–244 (1944)Google Scholar
  88. P. Jordan, Die Herkunft der Sterne (Hirzel, Stuttgart, 1947a)Google Scholar
  89. P. Jordan, Das Bild der modernen Physik (Stromverlag Hamburg, Bergedorf, 1947b)Google Scholar
  90. P. Jordan, Fünfdimensionale Kosmologie. Astronomische Nachrichten 276, 193–208 (1948)MathSciNetCrossRefGoogle Scholar
  91. P. Jordan, Formation of the stars and development of the universe. Nature 164, 637–640 (1949)CrossRefzbMATHGoogle Scholar
  92. P. Jordan, Schwerkraft und Weltall: Grundlagen der theoretischen Kosmologie (Vieweg & Sohn, Braunschweig, 1952)zbMATHGoogle Scholar
  93. P. Jordan, Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157, 112–121 (1959)CrossRefGoogle Scholar
  94. P. Jordan, Zum Problem der Erdexpansion. Die Naturwissenschaften 48, 417–425 (1961)CrossRefGoogle Scholar
  95. P. Jordan, Remarks about Ambarzumian’s conception of pre-stellar matter, in Recent Developments in General Relativity (Pergamon Press, Oxford, 1962c), pp. 289–292Google Scholar
  96. P. Jordan, Four lectures about problems of cosmology, in Cosmological Models, ed. by A. Giáo (Instituto Gulbenkian de Ciêcia, Lisbon, 1964), pp. 101–136Google Scholar
  97. P. Jordan, Die Expansion der Erde: Folgerungen aus der Diracschen Gravitationshypothese (Vieweg & Sohn, Braunschweig, 1966)CrossRefGoogle Scholar
  98. P. Jordan, Bemerkungen zu der Arbeit von H. Hönl und H. Dehnen. Z. Astrophys. 68, 201–203 (1968)Google Scholar
  99. P. Jordan, The Expanding Earth: Some Consequences of Dirac’s Gravitation Hypothesis (Pergamon Press, Oxford, 1971)Google Scholar
  100. P. Jordan, The theory of a variable ‘constant’ of gravitation. Unpublished essay to the Gravity Research Foundation (1954). http://www.gravityresearchfoundation.org/pdf/awarded/1954/jordan.pdf
  101. P. Jordan, Die Bedeutung der Diracschen Hypothese für die Geophysik. Akademie der Wissenschaften und der Literatur in Mainz, Mathematisch-Naturwissenschaftlichen Klasse, 9, 771–795, (1959b)Google Scholar
  102. P. Jordan, J. Ehlers, W. Kundt, Quantitatives zur Diracschen Schwerkraft-Hypothese. Z. Phys. 178, 501–518 (1964)CrossRefzbMATHGoogle Scholar
  103. C. Jungnickel, R. McCormmach, Cavendish: The Experimental Life (Bucknell University Press, Cranbury, NJ, 1999)Google Scholar
  104. K. Just, Zur Kosmologie mit veränderlicher Gravitationszahl. Z. Phys. 140, 648–655 (1955)MathSciNetCrossRefGoogle Scholar
  105. D. Kaiser, Is ψ just a ψ? Pedagogy, practice, and the reconstitution of general relativity, 1942–1975. Stud. Hist. Philos. Mod. Phys. 29, 321–338 (1998)CrossRefzbMATHGoogle Scholar
  106. D. Kaiser, When fields collide. Sci. Am. 350(June), 62–69 (2007)CrossRefGoogle Scholar
  107. E.R. Kanasewich, J.C. Savage, Dirac’s cosmology and radioactive dating. Can. J. Phys. 41, 1911–1922 (1963)CrossRefzbMATHGoogle Scholar
  108. R. Klee, The revenge of Pythagoras: how a mathematical sharp practice undermines the contemporary design argument in astrophysical cosmology. Br. J. Philos. Sci. 53, 331–354 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  109. D.S. Kothari, Cosmological and atomic constants. Nature 142, 354–355 (1938)CrossRefGoogle Scholar
  110. H. Kragh, Dirac: A Scientific Biography (Cambridge University Press, Cambridge, 1990)Google Scholar
  111. H. Kragh, Cosmonumerology and empiricism: the Dirac-Gamow dialogue. Astron. Q. 8, 109–126 (1991)CrossRefGoogle Scholar
  112. H. Kragh, Cosmology and Controversy: The Historical Development of Two Theories of the Universe (Princeton University Press, Princeton, 1996)Google Scholar
  113. H. Kragh, Matter and Spirit in the Universe: Scientific and Religious Preludes to Modern Cosmology (Imperial College Press, London, 2004)Google Scholar
  114. H. Kragh, Higher Speculations: Grand Theories and Failed Revolutions in Physics and Cosmology (Oxford University Press, Oxford, 2011)Google Scholar
  115. H. Kragh, Zöllner’s universe. Phys. Perspect. 14, 392–420 (2012)CrossRefGoogle Scholar
  116. H. Kragh, Expanding Earth and declining gravity: a chapter in the recent history of geophysics. Hist. Geo- Space Sci. 6, 45–55 (2015b)CrossRefGoogle Scholar
  117. H. Kragh, Gravitation and the Earth sciences: the contributions of Robert Dicke. (2015c), Arxiv:1501.04293 [physics. hist-ph]Google Scholar
  118. Y. Kramarovskii, V. Chechev, Does the charge of the electron vary with the age of the universe? Soviet Physics Uspekhi 13, 628–631 (1971)CrossRefGoogle Scholar
  119. A. Lightman, R. Brawer, Origins: The Lives and Worlds of Modern Cosmologists (Harvard University Press, Cambridge, MA, 1990)CrossRefGoogle Scholar
  120. A.S. Mackenzie, The Laws of Gravitation (American Book Company, New York, 1900)Google Scholar
  121. A. Mercier, M. Kervaire (eds.), Fünfzig Jahre Relativitätstheorie (Birkhäuser, Basel, 1956)zbMATHGoogle Scholar
  122. E.A. Milne, Relativity, Gravitation and World-Structure (Clarendon Press, Oxford, 1935)Google Scholar
  123. J. North, The Measure of the Universe: A History of Modern Cosmology (Oxford University Press, Oxford, 1965)Google Scholar
  124. H. Nussbaumer, L. Bieri, Discovering the Expanding Universe (Cambridge University Press, Cambridge, 2009)Google Scholar
  125. M.J. Nye, Blackett: Physics, war, and Politics in the Twentieth Century (Harvard University Press, Cambridge, MA, 2004)CrossRefGoogle Scholar
  126. J. O’Hanlon, K.-K. Tam, Stellar ages and an extended theory of gravitation. Prog. Theor. Phys. 43, 684–688 (1970)CrossRefGoogle Scholar
  127. G.C. Omer, A nonhomogeneous cosmological model. Astrophy. J. 109, 164–176 (1949)CrossRefGoogle Scholar
  128. E.J. Öpik, The Oscillating Universe (Mentor Book, New York, 1956)Google Scholar
  129. E.J. Öpik, Climatic change in cosmic perspective. Icarus 4, 289–307 (1965)CrossRefGoogle Scholar
  130. P.J.E. Peebles, Dicke, Robert Henry, in New Dictionary of Scientific Biography, ed. by N. Koertge (Tomson-Gale, Detroit, 2008), pp. 280–284Google Scholar
  131. P.J.E. Peebles, R.H. Dicke, Cosmology and the radioactive decay ages of terrestrial rocks and meteorites. Phys. Rev. 128, 2006–2011 (1962b)CrossRefGoogle Scholar
  132. P.J.E. Peebles, D.T. Wilkinson, The primeval fireball. Sci. Am. 216(June), 28–37 (1967)CrossRefGoogle Scholar
  133. P. Pochoda, M. Schwarzschild, Variation of the gravitational constant and the evolution of the sun. Astrophys. J. 139, 587–593 (1964)CrossRefGoogle Scholar
  134. J.H. Poynting, Collected Scientific Papers by John Henry Poynting (Cambridge University Press, Cambridge, 1920)Google Scholar
  135. M. Reinhardt, Mach’s principle—A critical review. Zeitschrift für Naturforschung A 28a, 529–539 (1973)Google Scholar
  136. S. Sambursky, Static universe and nebular red shift. Phys. Rev. 52, 335–338 (1937)CrossRefzbMATHGoogle Scholar
  137. A.R. Sandage, Current problems in the extragalactic distance scale. Astrophys. J. 127, 513–526 (1958)CrossRefGoogle Scholar
  138. E. Schatzmann, The Origin and Evolution of the Universe (Hutchison & Company, London, 1966). Translation of Origine et Évolution des Mondes, Paris, 1957.Google Scholar
  139. E.L. Schücking, Jürgen Ehlers, in Einstein’s Field Equations and their Physical Implications, ed. by B. G. Schmidt (Springer, Berlin, 2000), pp. v–viGoogle Scholar
  140. D. Sciama, On the origin of inertia. Mon. Not. R. Astron. Soc. 113, 34–42 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  141. G. Shahiv, J.N. Bahcall, The effect of the Brans-Dicke cosmology on solar evolution and neutrino fluxes. Astrophys. J. 155, 135–143 (1969)CrossRefGoogle Scholar
  142. J. Singh, Great Ideas and Theories of Modern Cosmology (Dover Publications, New York, 1970)Google Scholar
  143. P.J. Smith, The end of the expanding Earth hypothesis? Nature 271, 301 (1978)CrossRefGoogle Scholar
  144. J. Solomon, Gravitation et quanta. Journal de Physique et la Radium 9, 479–485 (1938)CrossRefzbMATHGoogle Scholar
  145. D. Stanley-Jones, Cosmical zero, and the origin of radiation and dense matter. Nature 164, 279–280 (1949)CrossRefGoogle Scholar
  146. G.J. Stoney, On the physical units of nature. Philos. Mag. 11, 381–390 (1881)CrossRefGoogle Scholar
  147. E. Teller, On the change of physical constants. Phys. Rev. 73, 801–802 (1948)CrossRefGoogle Scholar
  148. E. Teller, Are the constants constant?”, in Cosmology, Fusion, and other Matters: George Gamow Memorial Volume, ed. by F. Reines (Adam Hilger, London, 1972), pp. 60–66Google Scholar
  149. E. Teller, J. L. Shoolery, Memoirs. A Twentieth-Century Journey in Science and Politics. (Perseus Publishing, Cambridge, 2001)Google Scholar
  150. D. Ter Haar, Cosmogonical problems and stellar energy. Rev. Mod. Phys. 22, 119–152 (1950)CrossRefzbMATHGoogle Scholar
  151. D.C. Tozer, Heat transfer and convection currents. Philos. Trans. R. Soc. A 258, 252–271 (1965)CrossRefGoogle Scholar
  152. J.-P. Uzan, The fundamental constants and their variation: observational status and theoretical motivations. Rev. Mod. Phys. 75, 403–459 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  153. P.S. Wesson, Cosmology and Geophysics (Adam Hilger, Bristol, 1978)Google Scholar
  154. P.S. Wesson, Gravity, Particles, and Astrophysics (Reidel, Dordrecht, 1980)CrossRefGoogle Scholar
  155. T.M.L. Wigley, Climate and paleoclimate: What we can learn about solar luminosity variations. Sol. Phys. 74, 435–471 (1981)CrossRefGoogle Scholar
  156. C.M. Will, Experimental gravitation from Newton’s Principia to Einstein’s general relativity, in 300 Years of Gravitation, ed. by S. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987), pp. 80–127Google Scholar
  157. F. Zwicky, On the theory and observation of highly collapsed stars. Phys. Rev. 55, 726–743 (1939)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Helge Kragh
    • 1
  1. 1.Niels Bohr ArchiveNiels Bohr InstituteCopenhagenDenmark

Personalised recommendations