Skip to main content

An Alternative Mechanism for Long-Term Memory Formation

  • Chapter
  • First Online:
  • 878 Accesses

Abstract

Long-term memory (LTM) formation has been linked with functional strengthening of existing synapses as well as other processes including de novo synaptogenesis. However, it is unclear whether synaptogenesis can contribute to LTM formation. Using alpha-calcium/calmodulin kinase II autophosphorylation-deficient (T286A) mutants, we demonstrate that when functional strengthening is severely impaired contextual LTM formation is linked with training-induced PSD95 upregulation followed by persistent generation of multiinnervated spines (MIS), a type of synapse that is characterized by several presynaptic terminals contacting the same postsynaptic spine. In the chapter, the molecular processes involved in generation of MIS and properties of MIS-dependent memory will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Belelovsky K, Kaphzan H, Elkobi A, Rosenblum K (2009) Biphasic activation of the mTOR pathway in the gustatory cortex is correlated with and necessary for taste learning. J Neurosci 29:7424–7431

    Article  CAS  PubMed  Google Scholar 

  • Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:567–578

    Article  CAS  PubMed  Google Scholar 

  • Cooke SF, Wu J, Plattner F, Errington M, Rowan M, Peters M, Hirano A, Bradshaw KD, Anwyl R, Bliss TV, Giese KP (2006) Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. J Physiol 574:805–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coultrap SJ, Freund RK, O’Leary H, Sanderson JL, Roche KW, Dell’Acqua ML, Bayer KU (2014) Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Cell Rep 6:431–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiala JC, Feinberg M, Popov V, Harris KM (1998) Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci 18:8900–8911

    CAS  PubMed  Google Scholar 

  • Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 21:5568–5573

    CAS  PubMed  Google Scholar 

  • Giese KP, Fedorov NB, Filipkowski RK, Silva AJ (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279:870–873

    Article  CAS  PubMed  Google Scholar 

  • Giese, KP (2012) Long-term potentiation and memory. In: Memory Mechanisms in Health and Disease, KP Giese, ed., World Scientific, Singapore 1–17

    Google Scholar 

  • Govindarajan A, Kelleher RJ, Tonegawa S (2006) A clustered plasticity model of long-term memory engrams. Nat Rev Neurosci 7:575–583

    Article  CAS  PubMed  Google Scholar 

  • Gruart A, Munoz MD, Delgado-Garcia JM (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Hunsaker MR, Lee B, Kesner RP (2008) Evaluating the temporal context of episodic memory: the role of CA3 and CA1. Behav Brain Res 188:310–315

    Article  CAS  PubMed  Google Scholar 

  • Irvine EE, Vernon J, Giese KP (2005) AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory. Nat Neurosci 8:411–412

    CAS  PubMed  Google Scholar 

  • Irvine EE, Danhiez A, Radwanska K, Nassim C, Lucchesi W, Godaux E, Ris L, Giese KP (2011) Properties of contextual memory formed in the absence of alphaCaMKII autophosphorylation. Mol Brain 4:8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelleher RJ 3rd, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59–73

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2009) Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology 56(Suppl 1):18–31

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Huang CC, Wu MY, Hsu KS (2005) Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway. J Biol Chem 280:18543–18550

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Choi JH, Lee N, Lee HR, Kim JI, Yu NK, Choi SL, Lee SH, Kim H, Kaang BK (2008) Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Leuner B, Falduto J, Shors TJ (2003) Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci 23:659–665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Migues PV, Hardt O, Wu DC, Gamache K, Sacktor TC, Wang YT, Nader K (2010) PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci 13:630–634

    Article  CAS  PubMed  Google Scholar 

  • Murphy GG, Fedorov NB, Giese KP, Ohno M, Friedman E, Chen R, Silva AJ (2004) Increased neuronal excitability, synaptic plasticity, and learning in aged Kvbeta1.1 knockout mice. Curr Biol 14:1907–1915

    Article  CAS  PubMed  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    Article  CAS  PubMed  Google Scholar 

  • Nikonenko I, Jourdain P, Muller D (2003) Presynaptic remodeling contributes to activity-dependent synaptogenesis. J Neurosci 23:8498–8505

    CAS  PubMed  Google Scholar 

  • Nikonenko I, Boda B, Steen S, Knott G, Welker E, Muller D (2008) PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling. J Cell Biol 183:1115–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrak LJ, Harris KM, Kirov SA (2005) Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission. J Comp Neurol 484:183–190

    Article  PubMed  Google Scholar 

  • Popov VI, Deev AA, Klimenko OA, Kraev IV, Kuźminykh SB, Medvedev NI, Patrushev IV, Popov RV, Rogachevskii VV, Khutsiyan SS, Stewart MG, Fesenko EE (2005) Three-dimensional reconstruction of synapses and dendritic spines in the rat and ground squirrel hippocampus: new structural-functional paradigms for synaptic function. Neurosci Behav Physiol 35:333–341

    Article  CAS  PubMed  Google Scholar 

  • Radwanska K, Medvedev NI, Pereira GS, Engmann O, Thiede N, Moraes MF, Villers A, Irvine EE, Maunganidze NS, Pyza EM, Ris L, Szymanska M, Lipinski M, Kaczmarek L, Stewart MG, Giese KP (2011) Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci U S A 108:18471–18475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ (2000) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3:238–244

    Article  CAS  PubMed  Google Scholar 

  • Restivo L, Vetere G, Bontempi B, Ammassari-Teule M (2009) The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 29:8206–8214

    Article  CAS  PubMed  Google Scholar 

  • Sacktor TC (2011) How does PKMzeta maintain long-term memory? Nat Rev Neurosci 12:9–15

    Article  CAS  PubMed  Google Scholar 

  • Silva AJ (2003) Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J Neurobiol 54:224–237

    Article  CAS  PubMed  Google Scholar 

  • Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12:585–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swiech L, Perycz M, Malik A, Jaworski J (2008) Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta 1784:116–132

    Article  CAS  PubMed  Google Scholar 

  • Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421–425

    Article  CAS  PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, Jones T, Zuo Y (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462:915–919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462:920–924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yasuda H, Barth AL, Stellwagen D, Malenka RC (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6:15–16

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasia Radwanska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Radwanska, K., Giese, K.P. (2016). An Alternative Mechanism for Long-Term Memory Formation. In: Giese, K., Radwanska, K. (eds) Novel Mechanisms of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-24364-1_5

Download citation

Publish with us

Policies and ethics