Skip to main content

CaMKII Autophosphorylation-Dependent Learning and Memory

  • Chapter
  • First Online:
Novel Mechanisms of Memory

Abstract

Calcium/calmodulin-dependent kinase II is the most abundant protein in the post-synaptic density. It has been proposed to play an important role on learning and memory due to its autophosphorylation ability. Once phosphorylated in the right position CaMKII remains active even after the initial stimulus has finished. Although the model seems quite logical and straight forward the function of CaMKII autophosphorylation in learning and memory is still a matter of discussion. While its importance in learning is well established there isn’t still enough data to reach a conclusion on memory. In this chapter we will discuss CaMKII autophosphorylation theory, its importance for LTP, learning, memory and possible relevance in different diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WC, Tate WP (1997) Metaplasticity: a new vista across the field of synaptic plasticity. Prog Neurobiol 52:303–323

    Article  CAS  PubMed  Google Scholar 

  • Alzoubi KH, Aleisa AM, Alkadhi KA (2005) Impairment of long-term potentiation in the CA1, but not dentate gyrus, of the hippocampus in Obese Zucker rats: role of calcineurin and phosphorylated CaMKII. J Mol Neurosci 27:337–346

    Article  CAS  PubMed  Google Scholar 

  • Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411:801–805

    Article  CAS  PubMed  Google Scholar 

  • Bejar R, Yasuda R, Krugers H, Hood K, Mayford M (2002) Transgenic calmodulin-dependent protein kinase II activation: dose-dependent effects on synaptic plasticity, learning, and memory. J Neurosci 22:5719–5726

    CAS  PubMed  Google Scholar 

  • Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:567–578

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bronstein JM, Wasterlain CG, Farber DB (1988) A retinal calmodulin-dependent kinase: calcium/calmodulin-stimulated and -inhibited states. J Neurochem 50:1438–1446

    Article  CAS  PubMed  Google Scholar 

  • Buard I, Coultrap SJ, Freund RK, Lee YS, Dell’Acqua ML, Silva AJ, Bayer KU (2010) CaMKII “autonomy” is required for initiating but not for maintaining neuronal long-term information storage. J Neurosci 30:8214–8220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacucci F, Wills TJ, Lever C, Giese KP, O’Keefe J (2007) Experience-dependent increase in CA1 place cell spatial information, but not spatial reproducibility, is dependent on the autophosphorylation of the alpha-isoform of the calcium/calmodulin-dependent protein kinase II. J Neurosci 27:7854–7859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao LH, Stratton MM, Lee IH, Rosenberg OS, Levitz J, Mandell DJ, Kortemme T, Groves JT, Schulman H, Kuriyan J (2011) A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell 146:732–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xu P, Wijayawardana SR, Hanfelt J, Nakagawa T, Sheng M, Peng J (2006) Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 5:1158–1170

    Article  CAS  PubMed  Google Scholar 

  • Cho YH, Giese KP, Tanila H, Silva AJ, Eichenbaum H (1998) Abnormal hippocampal spatial representations in alphaCaMKIIT286A and CREBalphaDelta-mice. Science 279:867–869

    Article  CAS  PubMed  Google Scholar 

  • Cooke SF, Wu J, Plattner F, Errington M, Rowan M, Peters M, Hirano A, Bradshaw KD, Anwyl R, Bliss TV, Giese KP (2006) Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. J Physiol 574:805–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coultrap SJ, Bayer KU (2014) Nitric oxide induces Ca2+-independent activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII). J Biol Chem 289(28):19458–19465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coultrap SJ, Freund RK, O’Leary H, Sanderson JL, Roche KW, Dell’Acqua ML, Bayer KU (2014) Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Cell Reports 6:431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox CD, Rex CS, Palmer LC, Babayan AH, Pham DT, Corwin SD, Trieu BH, Gall CM, Lynch G (2014) A map of LTP-related synaptic changes in dorsal hippocampus following unsupervised learning. J Neurosci 34:3033–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230

    Article  PubMed  Google Scholar 

  • Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A 96:3269–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Xi YD, Zhang DD, Zhao X, Liu JM, Li CQ, Han J, Xiao R (2013) Soybean isoflavone ameliorates beta-amyloid 1-42-induced learning and memory deficit in rats by protecting synaptic structure and function. Synapse 67:856–864

    Article  CAS  PubMed  Google Scholar 

  • Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284:26655–26665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easton AC, Lourdusamy A, Loth E, Toro R, Giese KP, Kornhuber J, de Quervain DJ, Papassotiropoulos A, Fernandes C, Muller CP, Schumann G (2013a) CAMK2A polymorphisms predict working memory performance in humans. Mol Psychiatry 18:850–852

    Article  CAS  PubMed  Google Scholar 

  • Easton AC, Lucchesi W, Lourdusamy A, Lenz B, Solati J, Golub Y, Lewczuk P, Fernandes C, Desrivieres S, Dawirs RR, Moll GH, Kornhuber J, Frank J, Hoffmann P, Soyka M, Kiefer F, Schumann G, Peter Giese K, Muller CP, Treutlein J, Cichon S, Ridinger M, Mattheisen P, Herms S, Wodarz N, Zill P, Maier W, Mossner R, Gaebel W, Dahmen N, Scherbaum N, Schmal C, Steffens M, Lucae S, Ising M, Muller-Myhsok B, Nothen MM, Mann K, Rietschel M (2013b) AlphaCaMKII autophosphorylation controls the establishment of alcohol drinking behavior. Neuropsychopharmacology 38:1636–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easton AC, Lucchesi W, Mizuno K, Fernandes C, Schumann G, Giese KP, Muller CP (2013c) AlphaCaMKII autophosphorylation controls the establishment of alcohol-induced conditioned place preference in mice. Behav Brain Res 252:72–76

    Article  CAS  PubMed  Google Scholar 

  • Enslen H, Soderling TR (1994) Roles of calmodulin-dependent protein kinases and phosphatase in calcium-dependent transcription of immediate early genes. J Biol Chem 269:20872–20877

    CAS  PubMed  Google Scholar 

  • Erondu NE, Kennedy MB (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci 5:3270–3277

    CAS  PubMed  Google Scholar 

  • Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Inoue M, Okuno H, Sano Y, Takemoto-Kimura S, Kitamura K, Kano M, Bito H (2013) Nonlinear decoding and asymmetric representation of neuronal input information by CaMKIIalpha and calcineurin. Cell Reports 3:978–987

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga K, Stoppini L, Miyamoto E, Muller D (1993) Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 268:7863–7867

    CAS  PubMed  Google Scholar 

  • Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK, Waxham MN (2004) Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem 279:12484–12494

    Article  CAS  PubMed  Google Scholar 

  • Gerges NZ, Alzoubi KH, Alkadhi KA (2005) Role of phosphorylated CaMKII and calcineurin in the differential effect of hypothyroidism on LTP of CA1 and dentate gyrus. Hippocampus 15:480–490

    Article  CAS  PubMed  Google Scholar 

  • Giese KP, Fedorov NB, Filipkowski RK, Silva AJ (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279:870–873

    Article  CAS  PubMed  Google Scholar 

  • Gokcek-Sarac C, Adali O, Jakubowska-Dogru E (2013) Hippocampal levels of ChAT, PKA, phospho-PKA and phospho-CaMKIIalpha but not CaMKIIalpha positively correlate with spatial learning skills in rats. Neurosci Lett 545:112–116

    Article  CAS  PubMed  Google Scholar 

  • Hanson PI, Kapiloff MS, Lou LL, Rosenfeld MG, Schulman H (1989) Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron 3:59–70

    Article  CAS  PubMed  Google Scholar 

  • Hardingham N, Glazewski S, Pakhotin P, Mizuno K, Chapman PF, Giese KP, Fox K (2003) Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation. J Neurosci 23:4428–4436

    CAS  PubMed  Google Scholar 

  • Hell JW (2014) CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81:249–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoelz A, Nairn AC, Kuriyan J (2003) Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. Mol Cell 11:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510

    Article  CAS  PubMed  Google Scholar 

  • Irvine EE, Vernon J, Giese KP (2005) AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory. Nat Neurosci 8:411–412

    CAS  PubMed  Google Scholar 

  • Irvine EE, von Hertzen LS, Plattner F, Giese KP (2006) AlphaCaMKII autophosphorylation: a fast track to memory. Trends Neurosci 29:459–465

    Article  CAS  PubMed  Google Scholar 

  • Irvine EE, Danhiez A, Radwanska K, Nassim C, Lucchesi W, Godaux E, Ris L, Giese KP (2011) Properties of contextual memory formed in the absence of alphaCaMKII autophosphorylation. Mol Brain 4:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarome TJ, Kwapis JL, Ruenzel WL, Helmstetter FJ (2013) CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Front Behav Neurosci 7:115

    PubMed  PubMed Central  Google Scholar 

  • Jourdain P, Fukunaga K, Muller D (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J Neurosci 23:10645–10649

    CAS  PubMed  Google Scholar 

  • Kelly A, Laroche S, Davis S (2003) Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci 23:5354–5360

    CAS  PubMed  Google Scholar 

  • Kimura R, Silva AJ, Ohno M (2008) Autophosphorylation of alphaCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction. Learn Mem 15:837–843

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamsa K, Irvine EE, Giese KP, Kullmann DM (2007) NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. J Physiol 584:885–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JL (2008) Memory reconsolidation mediates the strengthening of memories by additional learning. Nat Neurosci 11:1264–1266

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, Yu S, Ding L, He C, Petralia RS, Wenthold RJ, Gallagher M, Huganir RL (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112:631–643

    Article  CAS  PubMed  Google Scholar 

  • Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Choi JH, Lee N, Lee HR, Kim JI, Yu NK, Choi SL, Kim H, Kaang BK (2008) Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458:299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengyel I, Voss K, Cammarota M, Bradshaw K, Brent V, Murphy KP, Giese KP, Rostas JA, Bliss TV (2004) Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Eur J Neurosci 20:3063–3072

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S (2014) Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. Cereb Cortex 24:353–363

    Article  PubMed  Google Scholar 

  • Lisman J (1994) The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci 17:406–412

    Article  CAS  PubMed  Google Scholar 

  • Lisman J, Goldring M (1988a) Evaluation of a model of long-term memory based on the properties of the Ca2+/calmodulin-dependent protein kinase. J Physiol 83:187–197

    Google Scholar 

  • Lisman JE, Goldring MA (1988b) Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci U S A 85:5320–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190

    Article  CAS  PubMed  Google Scholar 

  • Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu HE, MacGillavry HD, Frost NA, Blanpied TA (2014) Multiple spatial and kinetic subpopulations of CaMKII in spines and dendrites as resolved by single-molecule tracking PALM. J Neurosci 34:7600–7610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucchesi W, Mizuno K, Giese KP (2011) Novel insights into CaMKII function and regulation during memory formation. Brain Res Bull 85:2–8

    Article  CAS  PubMed  Google Scholar 

  • Mayford M, Wang J, Kandel ER, O’Dell TJ (1995) CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81:891–904

    Article  CAS  PubMed  Google Scholar 

  • Meyer T, Hanson PI, Stryer L, Schulman H (1992) Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256:1199–1202

    Article  CAS  PubMed  Google Scholar 

  • Miller P, Zhabotinsky AM, Lisman JE, Wang XJ (2005) The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PLoS Biol 3, e107

    Article  PubMed  PubMed Central  Google Scholar 

  • Mochizuki H, Ito T, Hidaka H (1993) Purification and characterization of Ca2+/calmodulin-dependent protein kinase V from rat cerebrum. J Biol Chem 268:9143–9147

    CAS  PubMed  Google Scholar 

  • Need AC, Giese KP (2003) Handling and environmental enrichment do not rescue learning and memory impairments in alphaCamKII(T286A) mutant mice. Genes Brain Behav 2:132–139

    Article  CAS  PubMed  Google Scholar 

  • Nogami T, Beppu H, Tokoro T, Moriguchi S, Shioda N, Fukunaga K, Ohtsuka T, Ishii Y, Sasahara M, Shimada Y, Nishijo H, Li E, Kitajima I (2011) Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice. Hippocampus 21:678–687

    Article  CAS  PubMed  Google Scholar 

  • Ohno M, Frankland PW, Chen AP, Costa RM, Silva AJ (2001) Inducible, pharmacogenetic approaches to the study of learning and memory. Nat Neurosci 4:1238–1243

    Article  CAS  PubMed  Google Scholar 

  • Ohno M, Tseng W, Silva AJ, Disterhoft JF (2005) Trace eyeblink conditioning requires the hippocampus but not autophosphorylation of alphaCaMKII in mice. Learn Mem 12:211–215

    Article  PubMed  Google Scholar 

  • Okamoto K, Bosch M, Hayashi Y (2009) The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda) 24:357–366

    Article  CAS  Google Scholar 

  • Opazo P, Labrecque S, Tigaret CM, Frouin A, Wiseman PW, De Koninck P, Choquet D (2010) CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron 67:239–252

    Article  CAS  PubMed  Google Scholar 

  • Pattinson D, Baccei M, Karadottir R, Torsney C, Moss A, McCutcheon J, Giese KP, Fitzgerald M (2006) Aberrant dendritic branching and sensory inputs in the superficial dorsal horn of mice lacking CaMKIIalpha autophosphorylation. Mol Cell Neurosci 33:88–95

    Article  CAS  PubMed  Google Scholar 

  • Radwanska K, Medvedev NI, Pereira GS, Engmann O, Thiede N, Moraes MF, Villers A, Irvine EE, Maunganidze NS, Pyza EM, Ris L, Szymanska M, Lipinski M, Kaczmarek L, Stewart MG, Giese KP (2011) Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci U S A 108:18471–18475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RG (2010) Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 30:4981–4989

    Article  CAS  PubMed  Google Scholar 

  • Reese LC, Laezza F, Woltjer R, Taglialatela G (2011) Dysregulated phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II-alpha in the hippocampus of subjects with mild cognitive impairment and Alzheimer’s disease. J Neurochem 119:791–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123:849–860

    Article  CAS  PubMed  Google Scholar 

  • Sametsky EA, Disterhoft JF, Ohno M (2009) Autophosphorylation of alphaCaMKII downregulates excitability of CA1 pyramidal neurons following synaptic stimulation. Neurobiol Learn Mem 92:120–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson DJ, Good MA, Seeburg PH, Sprengel R, Rawlins JN, Bannerman DM (2008) The role of the GluR-A (GluR1) AMPA receptor subunit in learning and memory. Prog Brain Res 169:159–178

    Article  CAS  PubMed  Google Scholar 

  • Sanhueza M, Lisman J (2013) The CaMKII/NMDAR complex as a molecular memory. Mol Brain 6:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284:162–166

    Article  CAS  PubMed  Google Scholar 

  • Shioda N, Beppu H, Fukuda T, Li E, Kitajima I, Fukunaga K (2011) Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. J Neurosci 31:346–358

    Article  CAS  PubMed  Google Scholar 

  • Thein S, Tao-Cheng JH, Li Y, Bayer KU, Reese TS, Dosemeci A (2014) CaMKII mediates recruitment and activation of the deubiquitinase CYLD at the postsynaptic density. PLoS One 9, e91312

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiagarajan TC, Piedras-Renteria ES, Tsien RW (2002) Alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS (2005) Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45:269–277

    Article  CAS  PubMed  Google Scholar 

  • van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila FR, Jiang YH, Elgersma Y, Weeber EJ (2007) Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 10:280–282

    Article  PubMed  Google Scholar 

  • von Hertzen LS, Giese KP (2005) Alpha-isoform of Ca2+/calmodulin-dependent kinase II autophosphorylation is required for memory consolidation-specific transcription. Neuroreport 16:1411–1414

    Article  Google Scholar 

  • Wang CC, Held RG, Hall BJ (2013) SynGAP regulates protein synthesis and homeostatic synaptic plasticity in developing cortical networks. PLoS One 8, e83941

    Article  PubMed  PubMed Central  Google Scholar 

  • Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Rowan MJ, Anwyl R (2006) Long-term potentiation is mediated by multiple kinase cascades involving CaMKII or either PKA or p42/44 MAPK in the adult rat dentate gyrus in vitro. J Neurophysiol 95:3519–3527

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Zhou H, Zhang L (2014) Influences of hyperthermia-induced seizures on learning, memory and phosphorylative state of CaMKIIalpha in rat hippocampus. Brain Res 1557:190–200

    Article  CAS  PubMed  Google Scholar 

  • Yabuki Y, Shioda N, Maeda T, Hiraide S, Togashi H, Fukunaga K (2014) Aberrant CaMKII activity in the medial prefrontal cortex is associated with cognitive dysfunction in ADHD model rats. Brain Res 1557:90–100

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tao-Cheng JH, Bayer KU, Reese TS, Dosemeci A (2013) CaMKII-mediated phosphorylation regulates distributions of Syngap-alpha1 and -alpha2 at the postsynaptic density. PLoS One 8, e71795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda H, Barth AL, Stellwagen D, Malenka RC (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6:15–16

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Zhao D, Xie CW (2010) Neurotrophins enhance CaMKII activity and rescue amyloid-beta-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis 21:823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Peter Giese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vigil, F.A.B., Giese, K.P. (2016). CaMKII Autophosphorylation-Dependent Learning and Memory. In: Giese, K., Radwanska, K. (eds) Novel Mechanisms of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-24364-1_4

Download citation

Publish with us

Policies and ethics