Skip to main content

Stress and Mycorrhizal Plant

  • Chapter
  • First Online:
Recent Advances on Mycorrhizal Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Plants are subjected to different types of stresses, including salinity, drought, heavy metal, compaction, etc. Plants are able to alter their morphology and physiology under stress including the activation of different signaling pathway and production of biochemicals. Plant species, environment, and climate conditions determine the response of plant to the stress conditions. Although with time plants adopt themselves with stress conditions, their growth and yield is adversely affected by stress. Numerous research works have indicated the favorite role of soil microbes such as arbuscular mycorrhizal (AM) fungi on the growth of the host plant under stress. AM fungi are able to establish a symbiotic association with their host plant and significantly increase the uptake of water and nutrients by producing an extensive hyphal network. Physiological and morphological alterations in the host plant result from AM fungi symbiosis, which can make the plant survive the stress. Some of the latest development and findings related to the effects of mycorrhizal fungi on the growth of their host plant under stress are presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmoneim TS, Moussa T, Almaghrabi OA, Alzahrani HS, Abdelbagi I (2014) Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. Life Sci J 11:10–17

    Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Audet P, Charest C (2008) Allocation plasticity and plant–metal partitioning: meta-analytical perspectives in phytoremediation. Environ Pollut 156:290–296

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2000) Stomatal behavior of arbuscular mycorrhizal plants. In: Arbuscular mycorrhizas: physiology and function. (Eds.) Kapulnik, Y., Douds, D., Springer, Dordrecht, pp 201–237

    Google Scholar 

  • Azcón R, Medina A, Roldán A, Biró B, Vivas A (2009) Significance of treated agrowaste residue and autochthonous inoculates (arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Chemosphere 75:327–334

    Article  PubMed  Google Scholar 

  • Bothe H (2012) Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis 58:7–16

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Palta J, Clements J, Buirchell B, Siddique K, Rengel Z (2014) Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crop Res 165:61–70

    Article  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuin T, Zhou M, Parsons D, Shabala S (2012) Genetic behaviour of physiological traits conferring cytosolic K+/Na+ homeostasis in wheat. Plant Biol 14:438–446

    Article  CAS  PubMed  Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Ehsan S, Prasher S, Marshall W (2007) Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68:150–158

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Zhang FS, Li X, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504

    Article  CAS  PubMed  Google Scholar 

  • Fernández DA, Roldán A, Azcón R, Caravaca F, Baath E (2012) Effects of water stress, organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species. Microb Ecol 63:794–803

    Article  PubMed  Google Scholar 

  • Flowers TS, Yeo AR (1989) Effects of salinity on plant growth and crop yields. In: Environmental stress in plants. (Ed.) Cherry, H., Springer, Berlin, pp 101–119

    Google Scholar 

  • Forgy D (2012) Arbuscular mycorrhizal fungi can benefit heavy metal tolerance and phytoremediation. J Nat Resour Life Sci Educ 41:23–26

    Article  Google Scholar 

  • Fu JH (2008) The research status of soil remediation in China. 2008 annual meeting of Chinese society for environmental sciences, pp 1056–1060

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115–124

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Azcón-Aguilar C, Bécard G, Bonfante P, Ferrol N, Franken P, Gollotte A, Harrier L, Lanfranco L, van Tuinen D (2004) (Eds.): Tkacz, J., Lange, L., Structural and functional genomics of symbiotic arbuscular mycorrhizal fungi. In: Advances in fungal biotechnology for industry, agriculture, and medicine. Springer, New York, pp 405–424

    Google Scholar 

  • Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401. doi:10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick B (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Grativol C, Hemerly A, Ferreira P (2011) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta 1819:176–185

    Article  PubMed  Google Scholar 

  • Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036

    Article  CAS  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Salt stress in plants. (Eds.): Ahmad, P., Azooz, M., Prasad, M., Springer, New York, pp 301–354

    Google Scholar 

  • Hamilton EW III, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Article  Google Scholar 

  • Hammer EC, Rillig MC (2011) The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus—salinity increases glomalin content. PLoS One 6, e28426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilderbrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterisation of two genes for Na+ exclusion in durum wheat: Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Advances in molecular breeding toward drought and salt tolerant crops. (Eds.): Jenks, M., Hasegawa, P., Mohan Jain, S., Springer, Dordrecht, pp 1–32

    Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  CAS  PubMed  Google Scholar 

  • Li J, Dai X, Zhao Y (2006) A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol 140:899–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Aarts M (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Müller J (2000) Hormonal balance in plants during colonization by mycorrhizal fungi. In: Arbuscular mycorrhizas: physiology and function. (Eds.) Kapulnik, Y., Douds, D., Springer, Dordrecht, pp 263–285

    Google Scholar 

  • Ludwig-Müller J (2010) Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Arbuscular mycorrhizas: physiology and function. (Eds.): Koltai, H., Kapulnik, Y., Springer, Dordrecht, pp 169–190

    Google Scholar 

  • Maathuis FJ (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  CAS  PubMed  Google Scholar 

  • Marschener H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crop Res 56:203–207

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York, NY

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Review article. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Miransari M (2011a) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Review article. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2011b) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2012) Soil nutrients. Nova, New York, p 336. ISBN 978-1-61324-785-3

    Google Scholar 

  • Miransari M (2013) Corn (Zea mays L.) growth as affected by soil compaction and arbuscular mycorrhizal fungi. J Plant Nutr 36:1853–1867

    Article  CAS  Google Scholar 

  • Miransari M (2014a) Mycorrhizal fungi affecting ecosystem efficiency: II. Salinity. AbtinBerkeh Ltd. Company\Creative Space, an Amazon Company, Isfahan\USA. ISBN: 978–1500580018

    Google Scholar 

  • Miransari M (ed) (2014b) Use of microbes for the alleviation of soil stresses, vol 1. (Ed.): Miransari, M., Springer, New York. ISBN 978-1-4614-9466-9

    Google Scholar 

  • Miransari M (ed) (2014c) Use of microbes for the alleviation of soil stresses volume 2: alleviation of soil stress by PGPR and Mycorrhizal fungi. (Ed.): Miransari, M., Springer, New York. ISBN 978-1-4939-0720-5

    Google Scholar 

  • Miransari M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.) -Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2006) Evaluating the effects of arbuscular mycorrhizae on nutrient uptake and corn yield in a compacted soil. Cab abstract. Iran J Soil Water Sci 20:106–121

    Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Tillage Res 104:48–55

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Pagano M (2014) Drought stress and mycorrhizal plant. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 97–110. ISBN 978-1-4614-9465-2

    Chapter  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Pupin B, da Silva Freddi O, Nahas E (2009) Microbial alterations of the soil influenced by induced compaction. Revista Brasileira de Ciência do Solo 33:1207–1213

    Article  CAS  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Sajedi NA, Ardakani MR, Rejali F, Mohabbati F, Miransari M (2010) Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiol Mol Biol Plants 16:343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajedi NA, Ardakani MR, Madani H, Naderi A, Miransari M (2011) The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol Mol Biol Plants 17:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shen ZG, Chen HM (2000) Bioremediation of heavy metal polluted soils. Rural Eco-Environ 16:39–44

    Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Singh M, Tripathi B (2013) Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma 250:663–669

    Article  CAS  PubMed  Google Scholar 

  • Siczek, A., FrÄ…c. M. 2012. Soil microbial activity as influenced by compaction and straw mulching. International Agrophysics 26, 65–69.

    Google Scholar 

  • Smekalova V, Doskocilova A, Komis G, Samaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32:2–11

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Smith F (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Talaat N, Shawky B (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  CAS  Google Scholar 

  • Tressner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213

    Google Scholar 

  • Tuteja N (2007) Chapter twenty-four-mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Hu J, Lin X, Qin S, Wang J (2011) Arbuscular mycorrhizal fungal community structure and diversity in response to long-term fertilization: a field case from China. World J Microbiol Biotechnol 27:67–74

    Article  Google Scholar 

  • Wang K, Liu Y, Dong K, Dong J, Kang J, Yang Q, Zhou H, Sun Y (2013) The effect of NaCl on proline metabolism in Saussurea amara seedlings. Afr J Biotechnol 10:2886–2893

    Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    Article  CAS  PubMed  Google Scholar 

  • Worchel E, Giauque H, Kivlin S (2013) Fungal symbionts alter plant drought response. Microb Ecol 65:671–678

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang Z, Wang J, Oh D, Dassanayake M, Liu B, Huang Q, Sun H, Xia R, Wu Y, Wang Y, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Leed S, Cheeseman J, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen S, Bohnert H, Zhu J, Wang X, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA 109:12219–12224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XH, Chen JS (1997) Advances in the study of remediation methods of heavy metals-contaminated soil. Environ Sci 18:72–76

    CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Zaidi A, Wani P, Khan M (eds) (2012) Toxicity of heavy metals to legumes and bioremediation. Springer, New York, p 248. ISBN 9783709107294

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhou DM, Hao XZ, Xue Y et al (2004) Advances in remediation technologies of contaminated soils. Ecol Environ Sci 13:234–242

    Google Scholar 

  • Zhou G, Chang R, Qiu L (2010) Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress responsive gene expression in Arabidopsis. Plant Mol Biol 72:357–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu KK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miransari, M. (2016). Stress and Mycorrhizal Plant. In: Pagano, M. (eds) Recent Advances on Mycorrhizal Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-24355-9_6

Download citation

Publish with us

Policies and ethics